K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(A=a+2\sqrt{a}-3\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)

\(A=-7\)

Ta có: \(A=\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)

\(=a-3\sqrt{a}+2\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)

\(=-7\)

NV
22 tháng 3 2022

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

a.

\(A=\left(1-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)

\(=\left(\dfrac{1-\sqrt{a}}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\left(1-\sqrt{a}\right)}{a-1}=\dfrac{-2\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{-2}{\sqrt{a}+1}\)

b.

\(a-2\sqrt{2}\rightarrow\sqrt{a}=\sqrt{2}-1\)

\(=2-2\sqrt{2}+1\)

=\(\left(\sqrt{2}-1\right)^2\)

\(\rightarrow A=\dfrac{-2}{\sqrt{2}-1+1}=\dfrac{-1}{\sqrt{2}}=\sqrt{2}\)

 

7 tháng 7 2021

=>\(A=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1+\sqrt{a}-1}{a-1}\right)\left(a>0,a\ne1\right)\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2}{\sqrt{a}+1}\)

b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thế vào A

\(=>A=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right) ^2}+1}=\dfrac{2}{\sqrt{2}}\)

4 tháng 7 2021

a) \(\dfrac{2\sqrt{125}-3\sqrt{5}-\sqrt{180}}{-\sqrt{5}}+\sqrt{8}=\dfrac{2\sqrt{25.5}-3\sqrt{5}-\sqrt{36.5}}{-\sqrt{5}}+\sqrt{8}\)

\(=\dfrac{10\sqrt{5}-3\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=\dfrac{\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=2\sqrt{2}-1\)

b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}\)

\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}=2\sqrt{2}+\sqrt{3}\)

c) \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}=\sqrt{16.3}-2\sqrt{9.\dfrac{1}{3}}+\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}\)

\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=1+\sqrt{3}\)

d) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

 

7 tháng 7 2021

\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)

\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)

\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)

Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)

\(=2\sqrt{x-4}\)

Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

 

26 tháng 6 2023

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

26 tháng 6 2023

tiện bạn coi giùm mình lại đề câu b luôn, nó sao sao ấy:v

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow1-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 1\)

hay x<1

Kết hợp ĐKXĐ, ta được: 0<x<1

1 tháng 7 2023

\(A=2\sqrt{27}-\sqrt{\left(1-\sqrt{3}\right)^2}+\dfrac{1}{2-\sqrt{3}}\\ =2.3\sqrt{3}-\left|1-\sqrt{3}\right|+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\\ =6\sqrt{3}-\left(-1+\sqrt{3}\right)+\dfrac{2+\sqrt{3}}{2^2-\sqrt{3^2}}\\ =6\sqrt{3}+1-\sqrt{3}+2+\sqrt{3}\\ =6\sqrt{3}+3\)

\(=6\sqrt{3}-\sqrt{3}+1+2+\sqrt{3}=6\sqrt{3}+3\)