Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề là \(x^2-\frac{1}{x^2}\)hay là \(x^2+\frac{1}{x^2}\)vậy? Xem lại đề thử xem!
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\)
ta có 8*(x-2009)^2 >= 0 nên 25 - y^2 >=0 hay 5 >=y >=
+ y = 5 => x = 2009
+ y = 4 => ko thỏa mãn
+ y = 3...
+ y = 2..
+ y =1..
+ y = 0..
=> nghiệm duy nhất x = 2009 và y =5
\(\left(x+2021\right)\left(\dfrac{1}{2}-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2021\\x=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(xy=\frac{yz}{2}=\frac{zx}{4}=k\Rightarrow\hept{\begin{cases}yz=2k\\zx=4k\end{cases}}\)
=> xyz = 64 <=> 2xk = 64 => xk = 32 (1)
<=> kz = 64 (2)
<=> 4yk = 64 => yk = 16 (3)
Nhân (1);(2) và (3) ta có : xk.kz.yk = 32.64.16
=> k3.xyz = 32.64.16
=> k3.64 = 32.64.16
=> k3 = 25.24
=> k3 = 29
=> k3 = (23)3
=> k3 = 83
=> k = 8
=> \(\hept{\begin{cases}8x=32\\8z=64\\8y=16\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=8\\y=2\end{cases}}\)
2x = 8y + 1
2x luôn có chữ số tận cùng là 2 ; 4 ; 8 ; 6
8y + 1 = 2x nên 8y phải có chữ số tận cùng là 1 ; 3 ; 7 ; 5
Nhưng 8y chỉ có thể có tận cùng là 8 ; 4 ; 2 ; 6
Vậy không tồn tại bất kì giá trị x;y nào thỏa mãn .
bạn ơi, phải là 8^(y+1)