Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4-2x+2
= (x2)2-2x2+1+2x2-2x+1
=(x2-1)2+2(x2-x+1)
=(x2-1)2+2(x2-2.1/2x+1/4+1/4)
=(x2-1)2+2[(x-1/2)2+1/4]
vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x
nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương
ta có \(A=2x^2-2xy+\frac{y^2}{2}+\frac{y^2}{2}-4y+8+7\)
\(=\frac{1}{2}\left[\left(4x^2-4xy+y^2\right)+\left(y^2-8y+18\right)\right]+7\)
\(=\frac{1}{2}\left[\left(2x-y\right)^2+\left(y-4\right)^2\right]+7\ge7\)
Vậy ta có A luôn dương
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
ta có \(-a^2+a-3=-\left(a^2-\frac{2a.1}{2}+\frac{1}{4}\right)+\frac{1}{4}-3\)
= \(-\left(a-\frac{1}{2}\right)^2-2.75\)
vì \(-\left(a-\frac{1}{2}\right)^2\le0\)với mọi a
nên biểu thức luôn âm
\(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-2.\frac{1}{2}a+\frac{1}{4}-\frac{1}{4}+3\right)\)
\(=-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(a-\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]< 0\)
\(\Leftrightarrow-a^2+a-3< 0\)\(\left(đpcm\right)\)
a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
-4x2-4x-2=-4(x2+x+1/2)
=-4(x2+2.1/2x+1/4+1/4)
=-4[(x+1/2)2+1/4]
vì (x+1/2)2 +1/4 lớn hơn hoặc = 0 với mọi x nên -4[(x+1/2)2+1/4] bé hơn hoặc = 0 với mọi x hay -4x2-4x-2 luôn âm với mọi x
Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)
\(=\left(2x-7\right)^2+2\)(*)
Vì \(\left(2x-7\right)^2\ge0\) với mọi x
=> (*)\(\ge1\)
=>(*) luôn luôn dương với mọi x
ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)
vì \(\left(2x-7\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x (đpcm)