K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Nếu x0 là nghiệm của f(x) thì a.x0+b=0 =>x0=-b/a

Để g(x)=0 thì bx+a=0

                       bx=-a

                        x=-a/b=1:(-b/a)=1/x0

=>Nghiệm của g(x) là 1/x0

Vậy nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)

29 tháng 2 2020

ĐỀ bài em sai nhé

Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0) 

7 tháng 3 2019

f(x0)=?.

7 tháng 3 2019

2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6

Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm

ahhii

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

6 tháng 3 2018

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

6 tháng 3 2018

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

15 tháng 4 2019

Nghiệm của đa thức một biến