Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-1}{5}x^3\cdot\dfrac{1}{32}x^{20}y^5\cdot\dfrac{64}{27}x^3y^9\cdot z^{2022}=-\dfrac{2}{135}x^{26}y^{14}z^{2022}\)
`A=\frac{-1}{5}x^3 \times \frac{1}{32}x^{20}y^5 \times \frac{64}{27}x^3y^9 \times z^{2022}=-\frac{2}{135}x^{26}y^{14}z^{2022}`
b) ( x - 4 )2 = ( x - 4 )4
( x - 4 )2 = ( x - 42 )2
=> ( x - 4 )2 = ( x - 16 )2
=> x - 4 = x - 16
=> x = 22 . 42 = 22 . ( 22 )2 = 22 . 24 = 26 = 64
=> x = 64
a) \(\left(x-1\right)^3=125\)
\(\Leftrightarrow\)\(\left(x-1\right)^3=5^3\)
\(\Leftrightarrow\)\(x-1=5\)
\(\Leftrightarrow\) \(x=5+1\)
\(\Leftrightarrow\) \(x=6\)
Vậy \(x=6\)
b) chưa ra - hihi ^^
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\Rightarrow\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}+4=0\)
\(\Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\)
\(\Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
\(\Rightarrow x=-100\)(do \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}>0\))
=> 4x^2 - 12x + 4 = 2x^2 - 2x - 2 - 2x^2 - 2x - 13
=> 4x^2 - 12x + 4 = - 4x - 15
=> 4x^2 - 12x + 4x + 4 + 15 = 0
=> 4x^2 - 8x + 19 = 0
Đề sai
\(=\dfrac{11}{4}:\dfrac{33}{16}-0,5+\left(\dfrac{14}{5}-3\right)^2\\ =\dfrac{11}{4}\cdot\dfrac{16}{33}-\dfrac{1}{2}+\left(-\dfrac{1}{5}\right)^2\\ =\dfrac{4}{3}-\dfrac{1}{2}+\dfrac{1}{25}=\dfrac{131}{150}\)
\(2022-\left(\dfrac{1}{4}\right)^2\cdot4^2=2022-\left(\dfrac{1}{4}\cdot4\right)^2=2022-1^2=2021\)
2022 - (1/4)^2x=4^2
(1/4)^2x=2022 - 4^2
(1/4)^2x=2006
x=2006/(1/4)
x=8024