Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1
Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .
Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4
Do đó, bất phương trình − x 2 + a x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.
1, \(3^{x-1}-5.3^{x-1}=162\Rightarrow-4.3^{x-1}=162\)vì \(-4.3^{x-1}
3, \(2^{x+1}.3^4=12^x\Rightarrow2^x.2.3^4=12^x\Rightarrow2.3^4=12^x:2^x=6^x\Rightarrow2^x.3^x=2.3^4\Rightarrow\begin{cases}x=1\\x=3\end{cases}\) (vô lí) pt vô nghiệm
đk: \(\begin{cases}x^2-5x+6\ge0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge3;x\le2\\x\ge1\end{cases}\) suy ra \(x\ge3;1\le x\le2\)
ta có \(\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\frac{x-1}{2}}+\log_{\sqrt{3}}^{x-3}\Rightarrow\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\left(x-3\right)\frac{x-1}{2}}\) suy ra \(2\sqrt{x^2-5x+6}=\left(x-3\right)\left(x-1\right)\)
giải pt ta tìm đc x và đối chiếu với đk đề bài ta tìm đc x
\(\Leftrightarrow-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=\dfrac{1}{x-4}-\dfrac{1}{x-2}\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{2;3;4\right\}\)}