K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2023

1.

Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)

Do đường tròn tiếp xúc với \(d_1;d_2\) nên:

\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)

Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.

2.

Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?

18 tháng 3 2023

Câu 2: Dạ vâng anh!

18 tháng 3 2023

Giả sử (C) tâm I ; BK R 

\(I\in d':2x+y=0\)  \(\Rightarrow I\left(t;-2t\right)\) 

 \(\Rightarrow R^2=IA^2=\left(t-4\right)^2+\left(-2t-2\right)^2\)  \(=5t^2+20\)

Ta có : \(IA=\dfrac{\left|t-7.\left(-2t\right)+10\right|}{\sqrt{1+7^2}}\)  \(\Rightarrow IA^2=\dfrac{\left(15t+10\right)^2}{50}=\dfrac{\left(3t+2\right)^2}{2}\)

Suy ra : \(5t^2+20=\dfrac{\left(3t+2\right)^2}{2}\)  \(\Leftrightarrow10t^2+40=9t^2+12t+4\)

\(\Leftrightarrow t^2-12t+36=0\) \(\Leftrightarrow t=6\)

Suy ra : \(I\left(6;-12\right)\) ; \(R^2=200\)

PT (C) : \(\left(x-6\right)^2+\left(y+12\right)^2=200\)

NV
18 tháng 3 2023

Do I thuộc \(2x+y=0\) nên tọa độ có dạng \(I\left(x;-2x\right)\)

Đường thẳng \(d_1\) qua A và vuông góc (d) có pt:

\(7\left(x-4\right)+1\left(y-2\right)=0\Leftrightarrow7x+y-30=0\)

Do (C) tiếp xúc (d) tại A nên I thuộc \(d_1\)

Thay tọa độ I vào pt \(d_1\Rightarrow7x+\left(-2x\right)-30=0\Rightarrow x=6\)

\(\Rightarrow I\left(6;-12\right)\Rightarrow R^2=IA^2=200\)

Phương trình: \(\left(x-6\right)^2+\left(y+12\right)^2=200\)

NV
21 tháng 4 2021

Đề bài sai

Điểm \(M\left(-5;2\right)\) không thuộc \(\Delta\) nên (C) ko thể tiếp xúc với \(\Delta\) tại M

21 tháng 4 2021

Cảm ơn thầy đã góp ý ạ, nếu đề bài đúng thì hướng làm ra sao vậy ạ?

19 tháng 10 2017

Đáp án B

31 tháng 1 2022

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

 

6 tháng 7 2021

Gọi pt đường tròn có dạng\(\left(C\right):\left(x-1\right)^2+\left(y+2\right)^2=R^2\)

Có \(R=d_{\left(A;d\right)}=\dfrac{\left|2.1-\left(-2\right)+6\right|}{\sqrt{2^2+1}}=\dfrac{10}{\sqrt{5}}\)

\(\Rightarrow R^2=20\)

\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y+2\right)^2=20\)

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

10 tháng 5 2022

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

10 tháng 5 2022

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)