Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{108}{119}.\frac{107}{211}+\frac{108}{119}.\frac{104}{211}=\frac{108}{119}.\left(\frac{107}{211}+\frac{104}{211}\right)=\frac{108}{119}.1=108\)
a) \(-\frac{1}{4}.13\frac{9}{11}-0,25.6\frac{2}{11}\)
\(=-\frac{1}{4}.13\frac{9}{11}-\frac{1}{4}.6\frac{2}{11}\)
\(=-\frac{1}{4}\left(13\frac{9}{11}+6\frac{2}{11}\right)\)
\(=-\frac{1}{4}.20\)
\(=-5\)
b) \(B=\frac{-5}{6}.\frac{4}{19}+\frac{-7}{12}.\frac{4}{19}-\frac{40}{57}\)
\(=\frac{4}{19}\left(\frac{-5}{6}+\frac{-7}{12}\right)-\frac{40}{57}\)
\(=\frac{4}{19}.\frac{-17}{12}-\frac{40}{57}\)
\(=\frac{-17}{57}-\frac{40}{57}\)
\(=-1\)
c) \(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{3}{7}.\frac{9}{26}-\frac{1}{2}.\frac{1}{7}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{1}{7}\left(3.\frac{9}{26}-\frac{1}{2}.\frac{1}{13}-1\right)\)
\(=\frac{1}{7}.0\)
\(=0\)
d) \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
\(=\left(\frac{4}{9}+6\frac{5}{9}\right):\left(-\frac{1}{7}\right)\)
\(=7:\left(-\frac{1}{7}\right)\)
\(=-49\)
\(bai1:a,\frac{3}{7}\cdot\frac{-5}{9}+\frac{4}{9}\cdot\frac{3}{7}-\frac{3}{7}\cdot\frac{8}{9}\)
\(< =>\frac{-15}{63}+\frac{12}{63}-\frac{24}{63}\)
\(< =>\frac{-15+12-24}{63}\)
\(< =>\frac{-3}{7}\)
\(b,1\frac{13}{15}\cdot0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(< =>\frac{28}{15}\cdot\frac{3}{4}-\left(\frac{11}{20}+\frac{1}{4}\right):\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{7}\)
\(< =>\frac{29}{35}\)
\(bai2:\)
\(a,\frac{-3}{4}\cdot x-\frac{4}{10}=\frac{1}{5}\)
\(< =>\frac{-3}{4}\cdot x=\frac{1}{5}+\frac{4}{10}\)
\(< =>\frac{-3}{4}\cdot x=\frac{3}{5}\)
\(< =>x=\frac{3}{5}:\frac{-3}{4}\)
\(< =>x=\frac{-4}{5}\)
\(b,3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(< =>3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(< =>\left[3\left(x-\frac{1}{3}\right)\right]=\frac{1}{12}< =>x-\frac{1}{3}=\frac{1}{12}:3=\frac{1}{36}=>x=\frac{1}{36}+\frac{1}{3}=>x=\frac{13}{36}\)
\(< =>\left[\frac{1}{3}\cdot x\right]=\frac{1}{12}< =>x=\frac{1}{12}:\frac{1}{3}=>x=\frac{1}{4}\)
Bài 1:
a)\(\frac{3}{7}.\frac{-5}{9}+\frac{4}{9}.\frac{3}{7}-\frac{3}{7}.\frac{8}{9}\) b,\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(=\frac{3}{7}.(\frac{-5}{9}+\frac{4}{9}-\frac{8}{9})\) \(=\frac{28}{15}.\frac{3}{4}-\left(\frac{11}{20}+\frac{5}{20}\right):\frac{7}{5}\)
\(=\frac{3}{7}.\frac{-9}{9}\) \(=\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(=\frac{-3}{7}\) \(=\frac{7}{5}-\frac{4}{7}\)
\(=\frac{29}{35}\)
Bài 2:
a)\(\frac{-3}{4}x-\frac{4}{10}=\frac{1}{5}\) b,\(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(\frac{-3}{4}x\) \(=\frac{1}{5}+\frac{4}{10}\) \(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(\frac{-3}{4}x\) \(=\frac{3}{5}\) \(\left(x.3-\frac{1}{3}.3\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{3}{5}:\frac{-3}{4}\) \(\left(x.3-1\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{4}{-5}\) \(x.\left(3+\frac{1}{3}\right)-1=\frac{1}{12}\)
\(x.\left(3+\frac{1}{3}\right)=\frac{1}{12}+1\)
\(x.\frac{10}{3}=\frac{13}{12}\)
\(x=\frac{13}{12}:\frac{10}{3}\)
\(x=\frac{13}{40}\)
a. \(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\)
\(=\frac{1}{3}(\frac{4}{5}+\frac{6}{5})-\frac{5}{3}\)
\(=\frac{1}{3}.2-\frac{5}{3}\)
\(=\frac{2}{3}-\frac{5}{3}\)
\(=-\frac{1}{1}\)
c. \(\frac{6}{7}.\frac{10}{9}+\frac{1}{7}.\frac{10}{9}-\frac{8}{9}\)
\(=\frac{10}{9}\left(\frac{6}{7}+\frac{1}{7}\right)-\frac{8}{9}\)
\(=\frac{10}{9}.1-\frac{9}{8}\)
\(=\frac{10}{9}-\frac{9}{8}\)
\(=-\frac{1}{72}\)