K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

2 ) vì p là số nguyên tố nên sẽ có các trường hợp :

trường hợp 1 : xét p = 2

ta có : p +2 = 2 + 2 = 4 (loại)

          p+10=2+10=12 (loại)

trường hợp 2 : xét p = 3

ta có: p+2=2+3=5 (t/m)

         p+10=3+10=13 (t/m)

trường hợp 3 : nếu p > 3 thì p sẽ nhận thêm 2 trường hợp 3k+1 và 3k+2

+ Nếu p = 3k+1

ta có : p+2=3k+1+2=3k+3 chia hết cho 3 ( là hợp số , loại)

+ nếu p = 3k+2

ta có : p+10=3k+2+10=3k+12 chia hết cho 3 (là hợp số , loại)

     VẬY SỐ NGUYÊN TỐ P THÕA MÃN LÀ 3

26 tháng 4 2015

câu 1: số đó là :87

28 tháng 4 2015

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

 

23 tháng 11 2016

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

24 tháng 11 2016

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9

13 tháng 5 2015

Ta có: 4n-5 chia hết cho 2n-1

Mà 2(2n-1) chia hết cho 2n-1 

    hay 4n-2 chia hết cho 2n-1

Nên 4n-5-(4n-2) chia hết cho 2n-1

  hay 4n-5-4n+2 chia hết cho 2n-1

       -3 chia hết cho 2n-1

=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}

Ta có bảng:

2n-1     1       -1       3        -3

n         1        0        2       -1(loại vì n thuộc N)

Vậy n ={1;0;2}

13 tháng 5 2015

1. Đặt P là thương:
 \(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \( 2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3 \)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1 \)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)

Vậy có ba giá trị của n tự nhiên là 0; 1; 2.

 

 bài 1cho tổng S =3+3^2+3^3+........+3^2007a)chứng minh S chia hết cho 13b) tìm số dư khi chia S cho 40c)so sánh 2S +3 với 82^502bài 2:a) tìm x thuộc N sao cho (2x-1)^x-4=(x+2)x-4b) tìm số A =12x3y(có gạch trên đầu)sao cho A chia hết cho 45c)tìm x,y thuộc N thỏa mãn 4^x+342=7^yd)tìm chữ số a,b sao cho a-b=3 và 3a5b(có gạch trên đầu) chia hết cho 3bài 3: a)cmr : nếu abcd(cgtđ) chia hết cho 99 thì ab(cgtđ) +cd(cgtđ) chia hết cho...
Đọc tiếp

 bài 1cho tổng S =3+3^2+3^3+........+3^2007

a)chứng minh S chia hết cho 13

b) tìm số dư khi chia S cho 40

c)so sánh 2S +3 với 82^502

bài 2:

a) tìm x thuộc N sao cho (2x-1)^x-4=(x+2)x-4

b) tìm số A =12x3y(có gạch trên đầu)sao cho A chia hết cho 45

c)tìm x,y thuộc N thỏa mãn 4^x+342=7^y

d)tìm chữ số a,b sao cho a-b=3 và 3a5b(có gạch trên đầu) chia hết cho 3

bài 3: a)cmr : nếu abcd(cgtđ) chia hết cho 99 thì ab(cgtđ) +cd(cgtđ) chia hết cho 99

b)chứng minh:B=2x10^n+25 chia hết cho 9 với n thuộc N

c) cho a,b là các chữ số , chứng minh:nếu 6a+11b chia hết cho 31 thì b0a(cgtđ) chia hết cho 31

d) cho 10^2n -1 chia hết cho 11 chứng minh 10^2n-1 +1 chia hết cho 11

bài 4:

a) tìm chữ số tận cùng của số M=9^9^9  + 2007^2008

b) từ các số 0;1;2;3;4;5;6 viết được bao nhiêu số có 5 chữ số khác nhau và số đó chia hết cho 5

    GIẢI HỘ 1 SỐ BÀI CX ĐC KO CẦN GIẢI HẾT NHƯNG NHỚ GIẢI CHI TIẾT VÀ ĐÚNG NHA ^^

3
28 tháng 10 2015

(3+32+33)+(34+35+36)+...+(32005+32006+32007)

=3(1+3+32)34(1+3+32)+...+32005(1+3+32)

=3.13+3^4.13+...+3^2005.13

=13(3+34+...+32005)

tick mk nha

30 tháng 9 2016

Ta có 3.S=3.(3+3^2+3^3+........+3^2007)

14 tháng 1 2016

1)

4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1\(\in\)Ư(3)={-1;1;-3;3}

=>2n\(\in\){0;2;-2;4}

=>n\(\in\){0;1;-1;2}

2)S= 3^1+3^3+3^5+...+3^2013+3^2015

S=(3^1+3^3+3^5)+(3^7+3^9+3^11)+...+(3^2011+3^2013+3^2015)

S=273+3^6(3+3^3+3^5)+...+3^2010(3+3^3+3^5)

S=273+3^6.273+...+3^2010.273

S=273(1+3^6+...+3^2010)

S=7.39(1+3^6+...+3^2010)

=>S chia hết cho 7

còn k chia hết cho 9 thì mk chịu

17 tháng 1 2016

Bổ sung cho bạn Mai Ngọc:

a) Ta có:

S=31+33+35+...+32013+32015

  =3+ 32(3+33+...+32011+32013)

  = 3+9(3+32+...+32011+32013)

Vì 9 chia hết cho 9 nên 9(3+33+...+32011+32013chia hết cho 9

Mà 3 không chia hết cho 9 nên 3+9(3+32+...+32011+32013) không chia hết cho 9

Hay S không chia hết cho 9

       Vậy không chia hết cho 9