Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là n (100<n<999)
n-1 chia hết cho 2 => (n-1)+1 chia hết cho 2 => n+1 chia hết cho 2
n-2 chia hết cho 3 => (n-2)+2 chia hết cho 3 => n+1 chia hết cho 3
n-3 chia hết cho 2 => (n-3)+3 chia hết cho 2 => n+1 chia hết cho 4
n-4 chia hết cho 2 => (n-4)+4 chia hết cho 2 => n+1 chia hết cho 5
n-5 chia hết cho 3 => (n-5)+5 chia hết cho 3 => n+1 chia hết cho 6
=> n+1 thuộc BC(2,3,4,5,6)
Ta có
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)=B(60)={0,60,120,......,960,1020,....}
100<n<999 => n=960-1=959
ta có thể thấy là n+2 chia hết cho 3,4,5,6,7=> n+2 chia hết cho 420
mà số lớn nhất có 3 chữ số chia hết cho 420 là 840 => n+2=840 => n=838
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
nhanh tay len