Bài 1: Tính hợp lí
1/ (-37) + 14 + 26 + 37
2/ (-24) + 6 + 10 + 24
3/ 15 + 23 + (-25) + (-23)
4/ 60 + 33 + (-50) + (-33)
5/ (-16) + (-209) + (-14) + 209
6/ (-12) + (-13) + 36 + (-11)
7/ -16 + 24 + 16 – 34
8/ 25 + 37 – 48 – 25 – 37
9/ 2575 + 37 – 2576 – 29
10/ 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17
Bài 2: Bỏ ngoặc rồi tính
1/ -7264 + (1543 + 7264)
2/ (144 – 97) – 144
3/ (-145) – (18 – 145)
4/ 111 + (-11 + 27)
5/ (27 + 514) – (486 – 73)
6/ (36 + 79) + (145 – 79 – 36)
7/ 10 – [12 – (- 9 - 1)]
8/ (38 – 29 + 43) – (43 + 38)
9/ 271 – [(-43) + 271 – (-17)]
10/ -144 – [29 – (+144) – (+144)]
Bài 3: Tính tổng các số nguyên x biết:
1/ -20 < x < 21
2/ -18 ≤ x ≤ 17
3/ -27 < x ≤ 27
4/ │x│≤ 3
5/ │-x│< 5
Bài 4: Tính tổng
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100
Bài 5: Tính giá trị của biểu thức
1/ x + 8 – x – 22 với x = 2010
2/ - x – a + 12 + a với x = - 98 ; a = 99
3/ a – m + 7 – 8 + m với a = 1 ; m = - 123
4/ m – 24 – x + 24 + x với x = 37 ; m = 72
5/ (-90) – (y + 10) + 100 với p = -24
Bài 6: Tìm x
1/ -16 + 23 + x = - 16
2/ 2x – 35 = 15
3/ 3x + 17 = 12
4/ │x - 1│= 0
5/ -13 .│x│ = -26
Bài 7: Tính hợp lí
1/ 35. 18 – 5. 7. 28
2/ 45 – 5. (12 + 9)
3/ 24. (16 – 5) – 16. (24 - 5)
4/ 29. (19 – 13) – 19. (29 – 13)
5/ 31. (-18) + 31. ( - 81) – 31
6/ (-12).47 + (-12). 52 + (-12)
7/ 13.(23 + 22) – 3.(17 + 28)
8/ -48 + 48. (-78) + 48.(-21)
Bài 8: Tính
1/ (-6 – 2). (-6 + 2)
2/ (7. 3 – 3) : (-6)
3/ (-5 + 9) . (-4)
4/ 72 : (-6. 2 + 4)
5/ -3. 7 – 4. (-5) + 1
6/ 18 – 10 : (+2) – 7
7/ 15 : (-5).(-3) – 8
8/ (6. 8 – 10 : 5) + 3. (-7)
Bài 9: So sánh
1/ (-99). 98 . (-97) với 0
2/ (-5)(-4)(-3)(-2)(-1) với 0
3/ (-245)(-47)(-199) với
123.(+315)
4/ 2987. (-1974). (+243). 0 với 0
5/ (-12).(-45) : (-27) với │-1│
Bài 13: Tìm x:
1/ (2x – 5) + 17 = 6
Bài 14: Tìm x
1/ x.(x + 7) = 0
2/ 10 – 2(4 – 3x) = -4
3/ - 12 + 3(-x + 7) = -18
4/ 24 : (3x – 2) = -3
5/ -45 : 5.(-3 – 2x) = 3
2/ (x + 12).(x-3) = 0
3/ (-x + 5).(3 – x ) = 0
4/ x.(2 + x).( 7 – x) = 0
5/ (x - 1).(x +2).(-x -3) = 0
Bài 15: Tìm
1/ Ư(10) và B(10)
2/ Ư(+15) và B(+15)
3/ Ư(-24) và B(-24)
4/ ƯC(12; 18)
5/ ƯC(-15; +20)
Bài 16: Tìm x biết
1/ 8 x và x > 0
2/ 12 x và x < 0
3/ -8 x và 12 x
4/ x 4 ; x (-6) và -20 < x < -10
5/ x (-9) ; x (+12) và 20 < x < 50
Bài 17: Viết dười dạng tích các tổng sau:
1/ ab + ac
2/ ab – ac + ad
3/ ax – bx – cx + dx
4/ a(b + c) – d(b + c)
5/ ac – ad + bc – bd
6/ ax + by + bx + ay
Bài 18: Chứng tỏ
1/ (a – b + c) – (a + c) = -b
2/ (a + b) – (b – a) + c = 2a + c
3/ - (a + b – c) + (a – b – c) = -2b
4/ a(b + c) – a(b + d) = a(c – d)
5/ a(b – c) + a(d + c) = a(b + d)
Bài 19: Tìm a biết
1/ a + b – c = 18 với b = 10 ; c = -9
2/ 2a – 3b + c = 0 với b = -2 ; c = 4
3/ 3a – b – 2c = 2 với b = 6 ; c = -1
4/ 12 – a + b + 5c = -1 với b = -7 ; c = 5
5/ 1 – 2b + c – 3a = -9 với b = -3 ; c = -7
Bài 20: Sắp xếp theo thứ tự
* tăng dần
1/ 7; -12 ; +4 ; 0 ; │-8│; -10; -1
2/ -12; │+4│; -5 ; -3 ; +3 ; 0 ; │-5│
* giảm dần
3/ +9 ; -4 ; │-6│; 0 ; -│-5│; -(-12)
4/ -(-3) ; -(+2) ; │-1│; 0 ; +(-5) ; 4 ; │+7│; -8
Bài 1:
Ta có: \(2n-1⋮n+1\)
⇔\(2n+2-3⋮n+1\)
⇔\(-3⋮n+1\)
⇔\(n+1\inƯ\left(-3\right)\)
⇔\(n+1\in\left\{1;-1;3;-3\right\}\)
⇔\(n\in\left\{0;-2;2;-4\right\}\)(tm)
Vậy: \(n\in\left\{0;-2;2;-4\right\}\)
Bài 2:
a) Ta có: \(\left(-2\right)\cdot\left(-2\right)\cdot\left(-2\right)\cdot...\cdot\left(-2\right)\)(có 102 số -2)
\(=\left(-2\right)^{102}\)
Vì căn bậc chẵn của số âm là số dương
và 102 là số chẵn
nên \(\left(-2\right)^{102}\) là số dương
⇔\(\left(-2\right)^{102}>0\)
hay \(\left(-2\right)\cdot\left(-2\right)\cdot\left(-2\right)\cdot...\cdot\left(-2\right)\)(có 102 chữ số 2) lớn hơn 0
b) (-1)*(-3)*(-90)*(-56)
Ta có: (-1)*(-3)*(-90)*(-56)
=1*3*90*56>0
hay (-1)*(-3)*(-90)*(-56)>0
c) \(90\cdot\left(-3\right)\cdot25\cdot\left(-4\right)\cdot\left(-7\right)\)
Vì -3;-4;-7 là 3 số âm
nên \(\left(-3\right)\cdot\left(-4\right)\cdot\left(-7\right)< 0\)(1)
Vì 90; 25 là 2 số dương
nên 90*25>0(2)
Ta có: (1)*(-2)=(-3)*(-4)*(-7)*90*25
mà số âm nhân số dương ra số âm
nên (-3)*(-4)*(-7)*90*25<0
d) Ta có: \(\left(-4\right)^{60}\) là số âm có mũ chẵn
nên \(\left(-4\right)^{60}>0\)
e) Ta có: \(\left(-3\right)^0\cdot\left(-7\right)^9=\left(-7\right)^9\)
Ta có: \(\left(-7\right)^9\) là số âm có bậc lẻ
nên \(\left(-7\right)^9< 0\)
hay \(\left(-3\right)^0\cdot\left(-7\right)^9< 0\)
f) Ta có: \(\left|-3\right|\cdot\left|-7\right|\cdot9\cdot4\cdot\left(-5\right)\)=3*7*9*4*(-5)
Vì 3*7*9*4>0
và -5<0
nên 3*7*9*4*(-5)<0
Bài 3:
a) Ta có: \(18⋮x\)
⇔x∈{1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
mà -6≤x≤3
nên x∈{-6;-3;-2;-1;1;2;3}
Vậy: x∈{-6;-3;-2;-1;1;2;3}
b) Ta có: x⋮3
⇔x∈{...;-15;-12;-9;-6;-3;0;3;6;9;...}
mà -12≤x<6
nên x∈{-12;-9;-6;-3;0;3}
Vậy: x∈{-12;-9;-6;-3;0;3}
c) Ta có: 12⋮x
⇔x∈Ư(12)
⇔x∈{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
mà -4<x<1
nên x∈{-3;-2;-1}
Vậy: x∈{-3;-2;-1}
Bài 4:
a) Ta có: \(2x+\left|-9+2\right|=6\)
⇔\(2x+7=6\)
hay 2x=-1
⇔\(x=\frac{-1}{2}\)(ktm)
Vậy: x∈∅
b) Ta có: \(36-\left(8x+6\right)=6\)
⇔8x+6=30
hay 8x=24
⇔x=3(thỏa mãn)
Vậy: x=3
c) Ta có: \(\left|2x-1\right|+9=\left|-13\right|\)
⇔\(\left|2x-1\right|+9=13\)
⇔\(\left|2x-1\right|=4\)
⇔\(\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-3}{2}\end{matrix}\right.\)(loại)
Vậy: x∈∅
d) Ta có: \(9x-3=27-x\)
\(\Leftrightarrow9x-3-27+x=0\)
hay 10x-30=0
⇔10x=30
⇔x=3(thỏa mãn)
Vậy: x=3
e) Ta có: \(\left(2x-8\right)\left(9-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\9-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\3x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)(tm)
Vậy: x∈{3;4}
f) Ta có: \(\left(x-3\right)\left(2y+4\right)=5\)
⇔x-3;2y+4∈Ư(5)
⇔x-3;2y+4∈{1;-1;5;-5}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\2y+4=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\frac{1}{2}\end{matrix}\right.\)(loại)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\2y+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=\frac{-3}{2}\end{matrix}\right.\)(loại)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\2y+4=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-9}{2}\end{matrix}\right.\)(loại)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\2y+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\2y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\frac{-5}{2}\end{matrix}\right.\)(loại)
Vậy: x∈∅; y∈∅