Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kéo dài các tia AN; AE; AM; AF cho chúng cắt đường thẳng BC theo thứ tự tại các điểm G;H;I;K.
Xét \(\Delta\)ABI có: BM là phân giác ^ABI và BM vuông góc AI (tại M) => \(\Delta\)ABI cân tại B
=> BM đồng thời là đường trung tuyến \(\Delta\)ABI => M là trung điểm AI
C/m tương tự, ta có: N;E;F lần lượt là trung điểm của AG;AH;AK
Xét \(\Delta\)GAH: N là trung điểm AG; E là trung điểm AH => NE là đường trung bình \(\Delta\)GAH
=> NE // GH hay NE // BC (1)
Tương tự: MF // BC (2); NF // BC (3)
Từ (1); (2) và (3) => 4 điểm M;N;E;F thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
b) Theo câu a ta có: NF là đường trung bình \(\Delta\)AGK => \(NF=\frac{GK}{2}=\frac{BG+BC+CK}{2}\)(*)
Lại có: \(\Delta\)ABG cân ở B; \(\Delta\)ACK cân ở C (câu a) nên BG = AB; CK = AC
Thế vào (*) thì được: \(NF=\frac{AB+BC+AC}{2}\),
KL: ...