K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Giải bài 44 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 44 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

14 tháng 1 2019

Giải bài 44 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 44 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

10 tháng 9 2018

A B C N M E F G H I K

a) Kéo dài các tia AN; AE; AM; AF cho chúng cắt đường thẳng BC theo thứ tự tại các điểm G;H;I;K.

Xét \(\Delta\)ABI có: BM  là phân giác ^ABI và BM vuông góc AI (tại M) => \(\Delta\)ABI cân tại B

=> BM đồng thời là đường trung tuyến \(\Delta\)ABI => M là trung điểm AI

C/m tương tự, ta có: N;E;F lần lượt là trung điểm của AG;AH;AK

Xét \(\Delta\)GAH: N là trung điểm AG; E là trung điểm AH => NE là đường trung bình \(\Delta\)GAH

=> NE // GH hay NE // BC (1)

Tương tự: MF // BC (2);  NF // BC (3)

Từ (1); (2) và (3) => 4 điểm M;N;E;F thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

b) Theo câu a ta có: NF là đường trung bình \(\Delta\)AGK => \(NF=\frac{GK}{2}=\frac{BG+BC+CK}{2}\)(*)

Lại có: \(\Delta\)ABG cân ở B; \(\Delta\)ACK cân ở C (câu a) nên BG = AB; CK = AC

Thế vào (*) thì được: \(NF=\frac{AB+BC+AC}{2}\),

KL: ...