Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì góc ABC là góc ngoài cua ΔAHB
nên góc ABC=góc AHB+góc HAB=90 độ+góc HAB
Xét ΔHAC vuông tại H có góc HAC+góc ACB=90 độ
=>góc ACB=90 độ-góc HAC
c: 1/2(góc ABC-góc ACB)
=1/2(180 độ-góc ABH-90 độ+góc HAC)
=1/2(90 độ-góc ABH+góc HAC)
=góc DAH
a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)
\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)
Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM
b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)
=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)
Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)
=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)
Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)
\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)
\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)
\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)
c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)
\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)
a: góc ADC-góc ADB
=góc BAD+góc ABD-góc DAC-góc C
=góc ABC-góc ACB
b: ΔAHD vuông tại H
nên góc HAD+góc ADH=90 độ
=>góc DAH=90 độ-góc ADH
=90 độ-180 độ+góc ADC
=góc ADC-90 độ
a) (thay vô y như toán đại í )
t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^
t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ
=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^
=> BOC^=BAC^+ABO^+ACO^
b) B2^+C2^=90 độ - A1^:2
=> B2^+C^2= 90 độ - (180 độ - B1^ - B2^ - C1^ - C2^):2
=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2
=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)
=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^