Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(k\ge0\)
a)
A(0,2\(\sqrt{3}\))
x=0
\(\Rightarrow y=\sqrt{k}+\sqrt{3}\)
\(\Rightarrow\sqrt{k}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
\(\Rightarrow k=3\) nhận
b)
\(B\left(1;0\right)\)
\(\Leftrightarrow\dfrac{\sqrt{k}+1}{\sqrt{3}-1}.1+\sqrt{k}+\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{k}+1+\sqrt{k}.\left(\sqrt{3}-1\right)+\sqrt{3}\left(\sqrt{3}-1\right)=0\)
\(\Leftrightarrow\sqrt{3}\sqrt{k}+4-\sqrt{3}=0\)
\(4>\sqrt{3}\Rightarrow Vo..N_0\)
(d) không đi qua điểm B(1;0)
c) Sửa đề \(k\ge0\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}.x+x+\sqrt{3}\sqrt{k}-\sqrt{k}+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}\left(x+\sqrt{3}-1\right)+x+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
Với \(x=1-\sqrt{3}\) => y=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}-1\) không phụ thuộc k
Điểm cố định
D\(\left(\left(1-\sqrt{3}\right);\left(\sqrt{3}+1\right)\right)\)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-3+n=-3\\-2m+n+6=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=0\\-2m+n=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\m+n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\)
1: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{-\left(1-\sqrt{x}\right)}+1\)
\(=\dfrac{-\sqrt{x}-3+\sqrt{x}}{\sqrt{x}}=-\dfrac{3}{\sqrt{x}}\)
2.
Hai đường thẳng cắt nhau tại 1 điểm thuộc trục hoành khi và chỉ khi:
\(-\dfrac{m}{2}=3-m\)
\(\Leftrightarrow m=6\)
Bài 1
a) A = \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\) (ĐK: x ≥ 0; x ≠ 4)
↔ A = \(\dfrac{x+2-\sqrt{x}+\sqrt{x}+2}{x-4}\)
↔ A = \(\dfrac{x+4}{x-4}\)
Để A = 2 ↔ \(\dfrac{x+4}{x-4}\) = 2 (ĐK: x ≠ 4)
→ \(x+4=2\left(x-4\right)\)
↔ \(2x-x=4+8\)
↔ \(x=12\)
Vậy x = 12 thì A = 2
b) Để A < 1
↔ \(\dfrac{x+4}{x-4}\) < 1
→ \(x+4\) < \(x-4\)
↔ 0x < -8 (vô lý)
Vậy không có giá trị của x nào thỏa mãn A < 1
Bài 2:
a: Để hai đường thẳng cắt nhau tại một điểm nằm trên trục Oy thì \(m^2-2=7\)
hay \(m\in\left\{3;-3\right\}\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Câu 2
a: Vì (d) đi qua A(-3;0) và B(0;-2) nên ta có hệ:
-3a+b=0 và 0a+b=-2
=>b=-2; -3a=-b=2
=>a=-2/3; b=-2
b: A(-3;0); B(0;-2)
\(AB=\sqrt{\left(0+3\right)^2+\left(-2-0\right)^2}=\sqrt{13}\)
(d): y=-2/3x-2
=>-2/3x-y-2=0
=>2/3x+y+2=0
=>2x+3y+6=0
\(d\left(O;AB\right)=\dfrac{\left|2\cdot0+3\cdot0+6\right|}{\sqrt{2^2+3^2}}=\dfrac{6}{\sqrt{13}}\)