K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2020

\(1+a^2b^2=abc\left(a+b+c\right)+a^2b^2=ab\left(ab+bc+ca+c^2\right)=ab\left(a+c\right)\left(b+c\right)\)

\(1+b^2c^2=bc\left(a+b\right)\left(a+c\right)\) ; \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)

\(\Rightarrow Q=\frac{c^2\left(a+b\right)^2ab\left(a+c\right)\left(b+c\right)}{bc\left(a+b\right)\left(a+c\right)ac\left(a+b\right)\left(b+c\right)}=1\)

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

12 tháng 3 2018

Đặt \(A=\left(\frac{a}{a^2b^2+a^2+1}\right)^2+\left(\frac{b}{b^2c^2+b^2+1}\right)^2+\left(\frac{c}{c^2a^2+c^2+1}\right)^2\)

Cần cm : \(B=\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}=1\)

\(B=\frac{a^2b^2c^2}{a^2b^2+a^2+a^2b^2c^2}+\frac{1}{b^2c^2+b^2+1}+\frac{a^2b^2c^2}{a^2c^2+a^2b^2c^3+a^2b^2c^2}\) (Do \(abc=1\))

\(=\frac{b^2c^2}{b^2c^2+b^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{b^2}{b^2c^2+b^2+1}=\frac{b^2c^2+b^2+1}{b^2c^2+b^2+1}=1\)(đúng)

Ta có : \(A=\frac{\frac{1}{\left(a^2b^2+a^2+1\right)^2}}{a^2}+\frac{\frac{1}{\left(b^2c^2+b^2+1\right)^2}}{b^2}+\frac{\frac{1}{\left(c^2a^2+c^2+1\right)^2}}{c^2}\)

\(\ge\frac{\left(\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}\right)^2}{a^2+b^2+c^2}=\frac{B^2}{a^2+b^2+c^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

12 tháng 3 2018

phân thức thức thứ 3 dòng thứ 3 ở mẫu là \(a^2c^2+a^2b^2c^4+a^2b^2c^2\)chứ bạn nhỉ????

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi