Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301
**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119
Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301
1. a, Gọi số cần tìm là \(\overline{abc}\).
Để \(\overline{abc}⋮2\) <=> c = 6; 0
Vậy các số cần tìm là 650; 560; 506.
b, Để \(\overline{abc}⋮5\) <=> c = 5
Vậy số cần tìm là 605.
@Thu Dieu
Gọi số cần tìm là \(\overline{aa}\).
Do \(\overline{aa}⋮2\Leftrightarrow\overline{aa}\) = 22; 44; 66; 88.
Ta có : 22 - 4 = 18 không chia hết cho 5 (loại)
44 - 4 = 40 chia hết cho 5 (chọn)
66 - 4 = 62 không chia hết cho 5 (loại)
88 - 4 = 84 không chia hết cho 5 (loại)
Vậy số cần tìm là 44.
@Thu Dieu
a) 31k là số nguyên tố mà ta thấy 31 là số nguyên tố
=> k = 1
còn lại không biết