Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)
\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)
\(\Rightarrow x=-2010\)
Bài giải
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Vì \(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)
\(x=0-2010=-2010\)
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)
\(\Rightarrow\left(\dfrac{x+1}{2009}+1\right)+\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)=\left(\dfrac{x+10}{2000}+1\right)+\left(\dfrac{x+11}{1999}+1\right)+\left(\dfrac{x+12}{1998}+1\right)\)
\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}=\dfrac{x+2010}{2000}+\dfrac{x+2010}{1999}+\dfrac{x+2010}{1998}\)\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)\(\Rightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)=0\)\(\Rightarrow x+2010=0\Rightarrow x=-2010\)
Suy ra \(\frac{x+1}{1999}+1+\frac{x+2}{1998}+1=\frac{x+3}{1997}+1+\frac{x+4}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}=\frac{x+2000}{1997}+\frac{x+2000}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}-\frac{x+2000}{1997}-\frac{x+2000}{1996}=0\)
Suy ra \(x+2000.\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)=0\)
Vì \(\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)\ne0\)
Suy ra x+2000=0
Suy ra x=-2000
Hok tốt
\(\dfrac{X+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)
đề thế này mới đúng ngu ạ
làm nhé nhớ tick
\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)
\(\Rightarrow\left(x+2010\right).\left(\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)\)\(\Rightarrow x+2010=0\)
\(\Rightarrow x=-2010\)
liêm đăng cmt
ta có /1998-x/ >=0
/1999-x/ >=0
để ... nhỏ nhất =>/1998-x/=0 =>x=1998
vậy thay x =1998 vào ta có :
/1998-1998/+/1999-1998/=1 (1)
để ... nhỏ nhất =>/1999-x/=0=>x=1999
thay x=1999 vào ta có :
/../+/../=1 (2)
từ (1) và(2)
=>A có giá trị nhỏ nhất =1
chắc giải như vậy cũng được
\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\Leftrightarrow\frac{x+15}{2000}+1+\frac{x+16}{1999}+1=\frac{x+17}{1998}+1+\frac{x+18}{1997}+1\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}=\frac{x+2015}{1998}+\frac{x+2015}{1997}\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}-\frac{x+2015}{1998}-\frac{x+2015}{1997}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
= 1999 x 10001 x 1998 - 1998 x 10001 x 1999
= 0