Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{46.51}\)
\(M=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+...+\frac{51-46}{46.51}\)
\(M=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{46}-\frac{1}{51}\)
\(M=1-\frac{1}{51}=\frac{50}{51}\)
\(N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{199\cdot201}\)
\(N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{199}-\frac{1}{201}\right)\)
\(N=\frac{1}{2}\cdot\left(1-\frac{1}{201}\right)\)
\(N=\frac{1}{2}\cdot\frac{200}{201}=\frac{100}{201}\)
Câu 2:
\(\dfrac{7}{9}\cdot\dfrac{3}{35}=\dfrac{1}{5}\cdot\dfrac{1}{3}=\dfrac{1}{15}\)
\(\dfrac{9}{22}\cdot55=\dfrac{9\cdot55}{22}=\dfrac{9\cdot5}{2}=\dfrac{45}{2}\)
a) \(\frac{51}{3}-\frac{22}{3}=\frac{51-22}{3}=\frac{29}{3}\)
b) \(\frac{5}{12}+\frac{5}{6}-\frac{3}{4}=\frac{5}{12}+\frac{10}{12}-\frac{9}{12}=\frac{5+10-9}{12}=\frac{6}{12}=\frac{1}{2}\)
c) \(1-\left(\frac{1}{5}+\frac{1}{2}\right)=\frac{10}{10}-\frac{2}{10}-\frac{5}{10}=\frac{10-5-2}{10}=\frac{3}{10}\)
d) \(\frac{111}{4}-\left(\frac{25}{7}+\frac{51}{4}\right)=\frac{777}{28}-\frac{60}{28}-\frac{357}{28}=\frac{360}{28}=\frac{90}{7}\)
e) \(\left(\frac{85}{11}+\frac{35}{7}\right)-\frac{35}{11}=\left(\frac{85}{11}-\frac{35}{11}\right)+\frac{35}{7}=\frac{50}{11}-\frac{35}{7}=\frac{350}{77}-\frac{385}{77}=-\frac{35}{77}\)
#)Giải :
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-\frac{19}{45}+...-\frac{119}{4950}\)
\(S=\frac{38}{25}+\left(\frac{9}{10}-\frac{11}{15}\right)+\left(\frac{13}{21}-\frac{15}{28}\right) +\left(\frac{17}{36}-\frac{19}{45}\right)+...+\left(\frac{197}{4851}-\frac{199}{4950}\right)\)
Ta thấy :
\(\left(\frac{9}{10}-\frac{11}{15}\right)=\frac{1}{6}=\frac{1}{\left(2.3\right)}=\frac{1}{2}-\frac{1}{3}\)
\(\left(\frac{13}{21}-\frac{15}{28}\right)=\frac{1}{12}=\frac{1}{\left(3.4\right)}=\frac{1}{3}-\frac{1}{4}\)
\(\left(\frac{17}{36}-\frac{19}{45}\right)=\frac{1}{20}=\frac{1}{\left(4.5\right)}=\frac{1}{4}-\frac{1}{5}\)
..........................................................
\(\left(\frac{197}{4851}-\frac{199}{4950}\right)=\frac{1}{2450}=\frac{1}{\left(49.50\right)}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow S=\frac{38}{25}+\left[\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{49}-\frac{1}{50}\right)\right]\)
\(\Rightarrow S=\frac{38}{25}+\left[\frac{1}{2}-\frac{1}{50}\right]\)
\(\Rightarrow S=\frac{38}{25}+\frac{24}{50}\)
\(\Rightarrow S=2\)
#~Will~be~Pens~#