Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 14n+3 và 21n+4 =d (d thuộc N)
=>14n+3 và 21n+4 chia hết cho d
=>3(14n+3) - 2(21n+4) =1 chia hết cho d
=> d=1
Vậy 14n+3 va 21n+4 la so nguyen to cung nhau
Gọi UCLN(14n+3,21n+4)=d
Ta có:14n+3 chia hết cho d\(\Rightarrow3\left(14n+3\right)\) chia hết cho d\(\Rightarrow42n+9\) chia hết cho d
21n+4 chia hết cho d\(\Rightarrow2\left(21n+4\right)\) chia hết cho d\(\Rightarrow42n+8\) chia hết cho d
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)\)chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d=1\) nên suy ra ĐPCM
Vậy ........................
Đặt UCLN(n + 1 , 2n + 3) = d
n + 1 chia hết cho d => 2n + 2 chia hết cho d
=> [(2n + 3) - (2n + 2) ] chia hết cho d
1 chia hết cho d hay d = 1
Vậy (n + 1 , 2n + 3) = 1 (2 số nguyên tố cùng nhau)
Muon chung minh n+3 va 2n+5 la so nguyen to thi ta phai chung minh n+3 va 2n+5 co UC la 1
(2n+5;n+3)=(n+2;n+3)=1 (UC)
Vay 2n+5 va n+3 la hai so nguyen to cung nhau
Cac ban lam dang nay cu lay so lon tru so be nhe!
Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :
n + 1 ⋮ d và 3n + 4 ⋮ d
<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d
<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d
=> (3n + 4) - (3n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )
Ý 2 tương tự
gọi ước chung lớn nhất của n+1 và 3n+4 là d
ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia hết cho d
3n+4 chia hết cho d
=> 3n+4 - ( 3n + 3) chia hết cho d
=> 3n +4 - 3n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
vậy..............
Gọi ƯCLN(3n+4;n+1) là d.
=>3n+4 chia hết cho d và n+1 chia hết cho d.
=>3.(n+1) chia hết cho d
=>3n+4 ___________d và 3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.
Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.
Ta có : 2n + 3 chia hết cho d.
3n + 5 chia hết cho d.
=> 3( 2n + 3 ) chia hết cho d.
=> 2(3n + 5 ) chia hết cho d.
=> 6n + 9 chia hết cho d.
=> 6n +10 chia hết cho d.
Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.
= 1 chia hết cho d
=> d thuộc Ư ( 1 )
=> d = 1
Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1
Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.
gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)
suy ra 2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d
3n+5 chia hết cho d } 2(3n+5) chia hế cho d } 6n+10 chia hết cho d
suy ra [(6n+10) -(6n+9) chia hết cho d
=[(6n-6n)+(10-9)] chia hết cho d
=[0+1] chia hết cho d
=1 chia hết cho d
vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1
Giải:
Gọi \(d=UCLN\left(3n+2;5n+3\right)\)
Ta có:
\(3n+2⋮d\)
\(5n+3⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+10⋮d\)
\(15n+9⋮d\)
\(\Rightarrow15n+10-15n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n+2,5n+3)
Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .
Vì 14n+3 và 21n+4 là hai sô nguyên tố cùng nhau
=>ƯCLN(14n+3,21n+4)=1
Ta có:
Gọi UCLN của hai số đó là d
=>14n+3 chia hết cho d
21n+4 chia hết cho d
=>3.(14n+3)=42n+9 chia hết cho d
2.(21n+4)=42n+8 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau(ĐPCM)
câu hỏi tương tự