K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)

Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

Thay A vào biểu thức

\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)

\(\Rightarrow x=\frac{22}{15}\)

P/s: Có thể tính sai :(

30 tháng 3 2019

\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)

Trước tiên mình tính dãy có dấu ngoặc đã

Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)

\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)

\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)

Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :

\(\frac{5}{11}\times x=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)

\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)

\(\Leftrightarrow x=\frac{22}{15}\)

Vậy \(x=\frac{22}{15}\)

24 tháng 4 2021

ê bạn ơi tìm y sao lại có x

24 tháng 4 2021

\(\frac{2}{3}\cdot y-\frac{12}{3}:\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=\frac{1}{3}\)\(\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+\frac{13-11}{11\cdot13}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}-\frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\frac{1}{13}\right)\)\(=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\frac{4}{3}\)\(=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4\cdot\frac{3}{4}=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-3=\frac{1}{3}\)

\(\frac{2}{3}\cdot y=\frac{1}{3}+3\)

\(\frac{2}{3}\cdot y=\frac{10}{3}\)

\(y=\frac{10}{3}:\frac{2}{3}\)

y=5

\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)

\(\frac{10}{11}.y=\frac{4}{3}\)

\(\Rightarrow y=\frac{22}{15}\)

21 tháng 1 2016

98/303 tích nha mình giải cho

2 tháng 7 2019

#)Giải :

\(200-18:\left(372:3x-1\right)-28=166\)

\(\Leftrightarrow200-18:\left(372:3x-1\right)=194\)

\(\Leftrightarrow18:\left(372:3x-1\right)=6\)

\(\Leftrightarrow372:3x-1=3\)

\(\Leftrightarrow3x-1=124\)

\(\Leftrightarrow3x=125\)

\(\Leftrightarrow x=\frac{125}{3}\)

2 tháng 7 2019

200 - 18 : (372 : 3 . x - 1) - 28 = 166

=> 200 - 18 : (372 : 3.x - 1)     = 166 + 28

=> 200 - 18 : (372 : 3.x) - 1)    = 194

=>          18 : (372 : 3.x - 1)     = 200 - 194

=>          18 : (372 : 3.x - 1)     = 6

=>                  372 : 3.x  - 1      = 18 : 6

=>                  372 : 3.x - 1       = 3

=>                    372 : 3.x          = 3 + 1

=>                    372 : 3.x          = 4

=>                             3.x          = 372 : 4

=>                             3.x          = 93

=>                                x          = 93 : 3

=>                                x          = 31

25 tháng 12 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\frac{98}{303}\)

\(A=\frac{49}{303}\)

25 tháng 12 2016

A= \(\frac{1}{15}\)\(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)

A= \(\frac{1}{3.5}\)\(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)

2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)

2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)\(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)

2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)

2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)

2.A= \(\frac{98}{303}\)

A  = \(\frac{98}{303}\) : 2

A  = \(\frac{49}{303}\)

Vay A=\(\frac{49}{303}\)