Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
1) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)\)
\(=x^3-16x-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-16x-x^4+1\)
b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=-7x^2+7x\)
c) \(\left(3x-1\right)\left(2x-5\right)-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-8x^2+20x-8\)
\(=-2x^2+3x-3\)
a) x(x+4)(x-4)-(x2+1)(x2-1)
=>x(x2-42)-(x4-12)
=>x3-16x-x4+1
=>-x4-x3-15x
b) 7x(4y-x)+4y(y-7x)-2(2y2-3.5x)
=>28xy-7x2+4y2-28xy-4y2+30x
=>-7x2+30x
c) (3x+1)(2x-5)-4(2x2-5x+2)
=>6x2-15x+2x-5-8x2+20x-8
=>-2x2+7x-13
h) \(=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]=3x\left(2y-3z\right)\left(x^2-10y+15z\right)\)
k) \(=\left(x+2\right)\left(3x-5\right)\)
l) \(=\left(18^2+3\right)\left(x+3\right)=327\left(x+3\right)\)
m) \(=7xy\left(2x-3y+4xy\right)\)
n) \(=2\left(x-y\right)\left(5x-4y\right)\)
\(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2=\dfrac{1}{2}x^4+x^2y^2+\dfrac{1}{2}y^4-2x^2y^2\\ =\dfrac{1}{2}x^4-x^2y^2+\dfrac{1}{2}y^4=\dfrac{1}{2}\left(x^4-2x^2y^2+y^4\right)\\ =\dfrac{1}{2}\left(x^2-y^2\right)^2\)
\(2\left(x^2+y^2\right)^2-2x^2y^2=2\left(x^4+2x^2y^2+y^4\right)-2x^2y^2\\ =2x^4+4x^2y^2+2y^4-2x^2y^2=2x^4+2x^2y^2+2y^4\\ =2\left(x^4+x^2y^2+y^4\right)\)