Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{5}{11}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\Rightarrow1-\frac{1}{x+2}=\frac{5}{11}\div\frac{1}{2}=\frac{10}{11}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{10}{11}=\frac{1}{11}\Rightarrow x+2=11\Rightarrow x=11-2=9\)
\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{x+\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+2}\)
\(=1-\frac{1}{x+2}=\frac{5}{11}\)
\(\frac{1}{x+2}=1-\frac{5}{11}=\frac{6}{11}\)
=> không có kết quả
\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{\left(5x+1\right)\left(5x+3\right)}\right)=\frac{11}{23}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{5x+1}-\frac{1}{5x+3}\right)=\frac{11}{23}\)
\(\Leftrightarrow1-\frac{1}{5x+3}=\frac{22}{23}\)
\(\Leftrightarrow\frac{1}{5x+3}=\frac{1}{23}\)
\(\Leftrightarrow5x+3=23\Leftrightarrow x=4\) ( TM )
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(5x+1\right).\left(5x+3\right)}=\frac{11}{23}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(5x+1\right)\left(5x+3\right)}\right)=\frac{11}{23}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{\left(5x+1\right)}-\frac{1}{\left(5x+3\right)}\right)=\frac{11}{23}\)
\(\Rightarrow1-\frac{1}{\left(5x+3\right)}=\frac{11}{23}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{5x+3}=\frac{1}{23}\)
\(\Rightarrow5x+3=23\)
\(\Rightarrow5x=23-3\)
\(\Rightarrow x=20:5\)
\(\Rightarrow x=4\)
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)
\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)
\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)
\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)
\(\frac{99}{20}-2x=\frac{49}{99}\)
\(2x=\frac{99}{20}-\frac{49}{99}\)
\(2x=\frac{8821}{1980}\)
\(x=\frac{8821}{1980}:2\)
\(x=\frac{8821}{3960}\)
bạn gom các số vào tách số 1/2 ra ngoài làm thừa số,tử 1 chuyển thành 2 lập hiệu xuất hiện tích đối nhau trừ đi phân phối ra là xong
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 30/61
( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) x 2 = 30/61 x 2
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) = 60/61
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 60/61
1 - 1/x+2 = 60/61
1/x+2 = 1 - 60/61
1/x+2 = 1/61
x + 2 = 61
x = 61 - 2
x = 59
Có:
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(1-0-0-0...-0-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{5}{11}:\dfrac{1}{2}=\dfrac{10}{11}\)
\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{10}{11}\)
\(\Rightarrow\dfrac{1}{x+2}=\dfrac{1}{11}\)
\(\Rightarrow x+2=11\)
\(\Rightarrow x=11-2=9\)
Vậy x = 9.
Chúc bạn học tốt!
1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2)
= 1/2.(1/1 - 1/3) + 1/2.(1/3 - 1/5) + 1/2.(1/5 - 1/7) + ... + 1/2.(1/x -1/x+2)
= 1/2.(1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 )
= 1/2.(1/1 - 0 - 1/x+2 )
= 1/2 . ( 1/1 - 1/x+2 )
= 1/2 . ( x+2/x+2 - 1/x+2 )
= 1/2 . x+1/x+2
Mà 1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2) = 5/11
=> 1/2 . x+1/x+2 = 5/11
=> x+1/x+2 = 5/11 : 1/2
=> x+1/x+2 = 10/11
=> x+1/x+2-1 = 10/11-1
=> x+1/x+1 = 10/10
=> x + 1 = 10
=> x = 10 - 1
=> x = 9
Vậy x = 9