K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Đặt A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/999.1000

=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000

=1-1/1000

=999/1000

12 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{999.1000}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(=1-\dfrac{1}{1000}\)

\(=\dfrac{999}{1000}\)

9 tháng 5 2022

999/1000(hình như v)

9 tháng 5 2022

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

17 tháng 9 2017

Cách làm :

Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{101}\)

\(\Leftrightarrow2F=\dfrac{100}{101}\)

\(\Leftrightarrow F=\dfrac{50}{101}\)

17 tháng 9 2017

Giải:

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

Sửa đề:

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)

\(\Leftrightarrow F=\dfrac{500}{1001}\)

Chúc bạn học tốt!

7 tháng 10 2021

a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)

7 tháng 10 2021

b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)

11 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

11 tháng 7 2016

                           \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

                       \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

                       \(=1-\frac{1}{2017}\)

                        \(=\frac{2016}{2017}\)

                    Ủng hộ mk nha!!!