Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)
\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)
B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)
C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)
Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)
Đường thẳng BC đi qua C và vuông góc với AH có phương trình: \(3x-y-13=0\)
H có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x+3y-7=0\\3x-y-13=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\Rightarrow H=\left(\dfrac{23}{5};\dfrac{4}{5}\right)\)
Gọi \(B=\left(m;3m-13\right)\)
Ta có: \(MB=MH\)
\(\Leftrightarrow\left(m-3\right)^2+\left(3m-15\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=\dfrac{23}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}B=\left(5;2\right)\\B=\left(\dfrac{23}{5};\dfrac{4}{5}\right)\left(\text{loại do }B\equiv H\right)\end{matrix}\right.\)
\(B=\left(5;2\right)\Rightarrow A=\left(1;2\right)\)
Đường thẳng AC có phương trình \(x+y-3=0\)
AB vuông góc CH nên nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình AB:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
B là giao điểm BN và AB nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}2x+y+5=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow B\left(-8;11\right)\)
Gọi D là điểm đối xứng A qua BN \(\Rightarrow D\in BC\)
Phương trình đường thẳng d qua A và vuông góc BN (nên nhận \(\left(1;-2\right)\) là 1 vtpt) có dạng:
\(1\left(x-1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+3=0\)
Gọi E là giao điểm d và BN \(\Rightarrow E\) là trung điểm AD
Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}2x+y+5=0\\x-2y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{13}{5};\dfrac{1}{5}\right)\)
\(\Rightarrow D\left(-\dfrac{31}{5};-\dfrac{8}{5}\right)\Rightarrow\overrightarrow{BD}=\left(\dfrac{9}{5};-\dfrac{63}{5}\right)=\dfrac{9}{5}\left(1;-7\right)\)
\(\Rightarrow\) Đường thẳng BC nhận (7;1) là 1 vtpt
Phương trình BC:
\(7\left(x+8\right)+1\left(y-11\right)=0\Leftrightarrow7x+y+45=0\)
Giả sử tam giác ABC có M là trung điểm BC, AB thuộc \(d_1\), AC thuộc \(d_2\).
Gọi \(C=\left(m;2-m\right)\in\left(d_2\right)\Rightarrow B=\left(-2-m;m\right)\)
Mà \(B\in\left(d_1\right)\Rightarrow2\left(-2-m\right)+6m+3=0\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
\(\Rightarrow C=\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)
Phương trình đường thẳng BC: \(\dfrac{x+1}{-1-\dfrac{1}{4}}=\dfrac{y-1}{1-\dfrac{7}{4}}\Leftrightarrow x-3y+4=0\)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)
1.
\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)
Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):
\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)
b.
Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)
B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)
M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)
M thuộc CM nên tọa độ thỏa mãn:
\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM
Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)
Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại
2.
AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp
Phương trình tham số:
\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)
Phương trình tổng quát:
\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)
b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)
Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:
\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;-1\right)\)
N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)
G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)
\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)
Phương trình đường thẳng d qua M và vuông góc AD có dạng:
\(1\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow x+y+1=0\)
Gọi \(M_1\) là giao điểm d và AD \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\) \(\Rightarrow M_1\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\)
Gọi \(M'\) là điểm đối xứng M qua AD \(\Rightarrow M'\in AB\)
\(M_1\) là trung điểm MM' \(\Rightarrow M'\left(-1;0\right)\)
Phương trình AB vuông góc CH và qua M' có dạng:
\(1\left(x+1\right)-2y=0\Leftrightarrow x-2y+1=0\)
A là giao điểm AD và AB nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
\(\Rightarrow\overrightarrow{MA}=\left(1;2\right)\Rightarrow\) đường thẳng AC nhận (2;-1) là 1 vtpt
Phương trình AC: \(2\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-1=0\)
C là giao điểm AC và CH nên tọa độ thỏa mãn \(\left\{{}\begin{matrix}2x-y-1=0\\2x+y+3=0\end{matrix}\right.\) \(\Rightarrow C...\)
Do B thuộc AB nên tọa độ thỏa mãn: \(B\left(2b-1;b\right)\Rightarrow\overrightarrow{AB}=\left(2b-2;b-1\right)\)
\(AM=\sqrt{5}\Rightarrow AB=2\sqrt{5}\Rightarrow\left(2b-2\right)^2+\left(b-1\right)^2=\left(2\sqrt{5}\right)^2\)
\(\Rightarrow\) Tọa độ B \(\Rightarrow\) thay tọa độ B và C vào pt AD để kiểm tra, loại nghiệm cùng dấu
\(\Rightarrow\) Viết pt BC