Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:
a + a + 1 + a + 2 = 3a + 3
Mà 3a \(⋮3;3⋮3\)
=> 3a + 3 \(⋮3\)
Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3
b,
Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2
Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2
c,
Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:
a[a + 1]
*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2
* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2
Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2
d,
Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:
a[a+1][a+2]
* cm a[a+1][a+2] chia hết cho 2
** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
Vậy a[a+1][a+2] chia hết cho 2
* cm a[a+1][a+2] chia hết cho 3
Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2
** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
Vậy a[a+1][a+2] chia hết cho 3
Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
e,
2 + 22 + 23 + 24 + ... + 260
= 2[1 + 2 + 22 + 23 + 24 + ... + 260] \(⋮2\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]
= 14 + 24.14 +... + 256.14
= 7 . 2[1 + 24 + ... + 256] \(⋮7\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 5.6 + 25.5.6 + ... + 255.5.6
= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 15.2 + 25.15.2 + ... + 255.15.2
= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)
Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15
g,
102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]
= 999.....9999 [2004 chữ số 9]
Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]
=> 102005 - 1 chia hết cho 9
Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]
=> 102005 - 1 chia hết cho 3
Vậy 102005 - 1 chia hết cho 3 và 9
h,
Ta có:
102005 + 2 = 102005 - 1 + 3
Mà 102005 - 1 chia hết cho 3 [chứng minh trên]
Lại có: 3 chia hết cho 3
=> 102005 + 2 chia hết cho 3
Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9
Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]
1/ Bài giải
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
2/ Bài giải
Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.
3/ Bài giải
‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp
3/Các tập hợp con của A là :
{a},{b},{c}
{a;b},{a;c},{b;c}
{a;b;c}
k mình nha
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Trong 3 số nguyên liên tiếp có 1 số :3,1 số chia 3 dư 1,1 số chia 3 dư 2
\(\Rightarrow\)Tổng 3 số có số dư là 0+1+2=3 chia hết cho 3
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
các bn giúp mk nha càng nhanh càng tốt
ai nhanh mk TC cho