K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Giá trị tuyệt đối của 1 số luôn cùng tính chẵn, lẻ với số đó

Do đó /x-2y/+/4y-5z/+/z-3x/ cùng chẵn, lẻ với x-2y+4y-5z+z-3x=(x-3x)+(-5z+z)+(4y-2y)=(-2).x+(-4).z+2y, là một số chẵn

Do đó /x-2y/+/4y-5z/+/z-3x/ là số chẵn, trong khi đó 2011 lẻ. Vậy ko tồn tại x,y,z thỏa mãn

17 tháng 8 2016

Xét tổng:

(x - 2y) + (4y - 5z) + (z - 3x)

= x - 2y + 4y - 5z + z - 3x

= 2y - 4z - 2x là số chẵn

Mà |x - 2y| + |4y - 5z| + |z - 3x| cùng tính chẵn lẻ với tổng (x - 2y) + (4y - 5z) + (z - 3x)

=> |x - 2y| + |4y - 5z| + |z - 3x| là số chẵn, khác 2011

=> không tồn tại các giá trị nguyên của x; y; z thỏa mãn đề bài ( đpcm)

17 tháng 1 2016

Help me!!!

17 tháng 1 2016

Yêu cầu các bạn ko dc trả lời linh tinh để kiếm tick nha

23 tháng 5 2016

CÂU 2:

/x+19/+/x+15/+/x+2011/=4x

=> x+19+x+15+x+2011=4x

=> vế trái sẽ là số dương

4x+2045=4x

=> x=2045

23 tháng 2 2017

Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0

Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn

Áp dụng điều này, với x, y, z ∈ Z thì:

| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn

⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn

⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn

Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:

| x – 2y | + | 4y – 5z | + | z – 3x | = 2011

12 tháng 2 2018

Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0

Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn

Áp dụng điều này, với x, y, z ∈ Z thì:

| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn

⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn

⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn

Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:

| x – 2y | + | 4y – 5z | + | z – 3x | = 2011

a) Xét :

  • \(a< 0\) 

\(\Rightarrow|a|=-a\)

\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)

  • \(a\ge0\)

\(\Rightarrow|a|=a\)

\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)

Vậy ta có đpcm

b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?

Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .

Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)

Áp dụng cm ở phần a), ta có:

\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn

\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn 

Mà \(2011\)là số lẻ

\(\Rightarrow\)Mẫu thuẫn với giả thiết 

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrowđpcm\)

6 tháng 2 2020

\(\text{Với mọi a}\left(\text{a là số nguyên thì:}\right)|a|\text{ cùng tính chẵn lẻ với a}\)

\(\Rightarrow2011\text{ cùng tính chẵn lẻ với:}x-2y+4y-5z+z-3x=2y-4z-2x=2\left(y-2z-x\right)\text{ là số chẵn}\)

\(\Rightarrow\text{ vô lí}\Rightarrow\text{ điều phải chứng minh}\)

Giả sử tồn tại các số nguyên thỏa x,y,z mãn đề bài

Giả sử \(x⋮2\)

\(\Rightarrow\left|x-2y\right|⋮2\)

\(\Rightarrow\left|4y-5z\right|+\left|z-3x\right|\)lẻ(Vì 2011 lẻ)

Với \(z⋮2\)thì:

\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|⋮2\\\left|z-3x\right|⋮2\end{cases}}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)\)

Với z ko chia hết cho 2 thì hay z lẻ

\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|\equiv1\left(mod2\right)\\\left|z-3x\right|\equiv1\left(mod2\right)\end{cases}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)}\)

Trường hợp x lẻ chứng minh tương tự ta cũng ko tìm được giá trị nguyên của y,z

Vậy ko tồn tại các số nguyên x,y,z thỏa mãn đề bài(đpcm)

P/s : Có lẽ sai nhưng vẫn làm :))

Do \(2011>0\) nên \(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|>0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-2y\right|=x-2y\\\left|4y-5z\right|=4y-5z\\\left|z-3x\right|=z-3x\end{matrix}\right.\)

Khi đó ta có \(x-2y+4y-5z+z-3x=2011\)

\(\Leftrightarrow-2x+2y-4z=2011\)

Ta thấy : \(-2x+2y-4z⋮2\forall x,y,z\in Z\)\(2011⋮̸2\)

Nên không tồn tại các số nguyên \(x,y,z\) thỏa mãn đề.

6 tháng 2 2020

| x - 2y | + | 4y - 5z | + | z - 3x | = 2011

Ta có \(\left|x-2y\right|=\left\{{}\begin{matrix}x-2y\forall x>2y\\2y-x\forall x\le2y\end{matrix}\right.\)

\(\Rightarrow\left|x-2y\right|+x-2y=\left\{{}\begin{matrix}2\left(x-2y\right)\forall x>0\\0\forall x\le0\end{matrix}\right.\)

\(\Rightarrow\left|x-2y\right|+x-2y⋮2\forall x,y\in Z\)

Chứng minh tương tự ta có

\(\left\{{}\begin{matrix}\left|4y-5z\right|+4y-5z⋮2\\\left|z-3x\right|+x-3x⋮2\end{matrix}\right.\) \(\forall x,y,z\) nguyên

Do đó \(\left|x-2y\right|+\left(x-2y\right)+\left|4y-5z\right|+\left(4y-5z\right)+\left|z-3x\right|⋮2\)

( với mọi x , y , z nguyên )

\(\Rightarrow\left(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\right)+\left(x-2y+4y-5z+z-3x\right)⋮2\)

( với mọi x , y , z nguyên )

\(\Rightarrow\left(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\right)+\left(2y-2x-4z\right)⋮2\)

( với mọi x , y , z nguyên )

\(2y-2x-4z⋮2\) ( với mọi x , y , z nguyên )

\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|⋮2\) ( với mọi x , y , z nguyên )

\(\Rightarrow2011⋮2\) ( do | x - 2y | + | 4y - 5z | + | z - 3x | = 2011 )

Mà 2011 ko chia hết cho 2

\(\Rightarrow\text{| x - 2y | + | 4y - 5z | + | z - 3x | = 2011}\) ( vô lí )

( với mọi x , y , z nguyên )

Vậy ko có giá trị x , y ,z nguyên nào thỏa mãn đề bài

Dài thiệt đó @@@

Ko bt có đúng ko

~ Học tốt

# Chiyuki Fujito ____