Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐKXĐ:\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow x\ne\pm1}\)
\(b,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}+\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\frac{x-1-x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x-1-x^2-x+2}\)
\(=\frac{4x}{1-x^2}\)
\(c,A\ge0\Leftrightarrow\frac{4x}{1-x^2}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}4x\ge0\\1-x^2\ge0\end{cases}\left(h\right)\hept{\begin{cases}4x\le0\\1-x^2\le0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2\le1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\x^2\ge1\end{cases}}}\)
\(\Leftrightarrow0\le x\le1\left(h\right)x\le-1\)
Vậy ///////
\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)
\(\left(x-5\right)\left(2x-1-x+5\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)
Ta có: \(5⋮5\)
\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)
\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)
đpcm
a) 4x2-y2+2y-1
=4x2 -(y2-2y+1)
=(2X)2 -(y -1)2
=(2x-y+1)(2x+y-1)
b) 5x(x-2)-(2-x)
=5x(x-2)+(x-2)
=(x-2)(5x+1)
Đề sai sửa luôn !
\(a,M=\left(\frac{21}{x^2-9}+\frac{4-x}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21-\left(4-x\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{x+3-1}{x+3}\right)\)
\(=\frac{21-4x-12+x^2+3x-x^2+3x+x-3}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{3}{x-3}\)
\(b,x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Kết hợp ĐKXĐ => x = 2
Thay vào \(M=\frac{3}{2-3}=\frac{3}{-1}=-3\)
Vậy ...........................
\(a,x^2-x-6=0\)
\(x^2-3x+2x-6=0\)
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(b,x^2+5x+6=0\)
\(x^2+2x+3x+6=0\)
\(x\left(x+2\right)+3\left(x+2\right)=0\)
\(\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
\(\left(x-3\right)^2-\left(x^2-3x\right)=0\)
\(\left(x-3\right).\left(x-3\right)-x.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x-3-x\right)=0\)
\(\left(x-3\right).3=0\)
\(x-3=0=>x=3\)
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
Bài 1 :
\(x^2\left(x-3\right)-4x+12=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)
Bài 2 :
\(x-1-x^2\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)