Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, Ta có: \(3^3\equiv-1\left(mod28\right)\)
\(\Rightarrow3^{1179}\equiv-1\left(mod28\right)\)
\(\Rightarrow3^{1181}\equiv-9\left(mod28\right)\)
Vậy \(3^{1181}\) chia 28 dư -9
Bài 2:
\(2^5\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2000}\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2002}\equiv4\left(mod31\right)\)
\(\Rightarrow2^{2002}-4⋮31\)
Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????/
Tùy bạn, bạn lo mấy môn đó cho cố vô rớt cấp 3 kệ bạn. Người ta học ko giúp thì thôi xéo!!
Tùy bạn, bạn lo mấy môn đó cho cố vô rớt cấp 3 kệ bạn. Người ta học ko giúp thì thôi xéo!!
ta co :2009^1du 2009 (mod 2011) ; 2009^2 du 4(mod 2011) ; 2009^10 du 1024(mod 2011) ; 2009^20 du 845(mod 2011) ; 2009^40du120(mod 2011) ;2009^100 du 1450 (mod 2011) ;2009^200 du 200(mod2011) ; 2009^400 du503(mod 2011) 2009^1000 du 1194(mod 2011) ;2009^2000 du 1848 mod2011 ma 2009^2011=2009^2000.2009^10.2009 =>2009^2011 du 1848.1024.2009mod 2011 hay 2009^2011 chia cho 2011du2009