Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
Câu 3 và câu 4 thì tớ làm rồi nhé!
Câu 7:
+) Với p = 2 => p + 2 = 2 + 2 = 4 (là hợp số)
=> p = 2 (loại)
+) Với p = 3 => p + 2 = 3 + 2 = 5 (là số nguyên tố)
=> p + 10 = 3 + 10 = 13 (là số nguyên tố)
+) Với p > 3; p là số nguyên tố thì p có dạng là 3k + 1 hoặc 3k + 2
-) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . (k + 1) \(⋮\) 3 (là hợp số)
=> p = 3k + 1 (loại)
-) p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 . (k + 4) \(⋮\) 3 (là hợp số)
=> p = 3k + 2 (loại)
=> p chỉ có thể bằng 3
Vậy p = 3 thì p + 2 và p + 10 là số nguyên tố.
Câu 3:
A = 2016 + 20162 + ... + 20162016
A = (2016 + 20162) + ... + (20162015 + 20162016)
A = 2016 . (1 + 2016) + ... + 20162015 . (1 + 2016)
A = 2016 . 2017 + ... + 20162015 . 2017
A = 2017 . (2016 + ... + 20162015)
Vì 2017 \(⋮\)2017 nên suy ra 2017 . (2016 + ... + 20162015) \(⋮\)2017
=> A \(⋮\)2017
Vậy A \(⋮\)2017
Câu 4:
a) A = 4 + 42 + 43 + ... + 42016
A = (4 + 42 + 43) + ... + (42014 + 42015 + 42016)
A = 4 . (1 + 4 + 42) + ... + 42014 . (1 + 4 + 42)
A = 4 . 21 + ... + 42014 . 21
A = 21 . (4 + ... + 42014)
Vì 21 \(⋮\)21 nên suy ra 21 . (4 + ... + 42014) \(⋮\)21
=> A \(⋮\)21
Vậy A \(⋮\)21
b) A = 4 + 42 + 43 + ... + 42016
A = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 42010 . ( 4 + 42 + 43 + 44 + 45 + 46)
A = 1 . 5460 + ... + 42010 . 5460
A = 5460 . (1 + ... + 42010)
Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + ... + 42010) \(⋮\)420
=> A \(⋮\)420
Vậy A \(⋮\)420.
Bài 5:Giải:
Ta có: \(\left\{{}\begin{matrix}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow a=2016-3c\)
Lấy \(\left(2\right)-\left(1\right)\) ta được:
\(2b-3c=1\Leftrightarrow b=\dfrac{1+3c}{2}\)
Khi đó:
\(P=a+b+c=\left(2016-3c\right)+\dfrac{1+3c}{2}\) \(+\) \(c\)
\(=\left(2016+\dfrac{1}{2}\right)+\dfrac{-6c+3c+2c}{2}\)
\(=2016\dfrac{1}{2}-\dfrac{c}{2}\) Vì \(a,b,c\ge0\) nên:
\(P=2016\dfrac{1}{2}-\dfrac{c}{2}\le2016\dfrac{1}{2}\)
Vậy \(P_{max}=2016\dfrac{1}{2}\Leftrightarrow c=0\)