Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3
( x + 5 ) . ( y + 2 ) = 102
ta có :\(y+2\inƯ\left(102\right)\)
mà \(y+2\ge2\)
nên \(y+2=2\)hoặc \(y+2=3\)
TH1 nếu \(y+2=2\)
=>\(y=1\)
Do \(y+2=2\)nên \(x+5=51\)
=>\(x=46\)
TH2 nếu \(y+2=3\)
=>\(y=1\)
Do \(y+2=3\)nên \(x+5=34\)
=>\(x=29\)
Vậy cặp số x;y lần lượt là :
nếu y=0 thì x=46
nếu y=1 thì x=29
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
câu 1. Nhận xét:
Loại suy:
3193 không chia hết cho 2 suy ra 3193 ko chia hết cho 2k, 4k, 6k, 8k
Tương tự 3193 không chia hết cho 3k, 7k, 5k, 9k suy ra 3193 là số nguyên tố
Gọi số chia là ab => b chỉ có thể là 1, 3, 7, 9
Ngoài ra, ta nhận thấy thương của phép chia cũng phải là một số nguyên tố (kí hiệu là *)
Phép thử:
*b=9 => a=1, 2, 5, 7, 9 => thương ko là số tự nhiên
*b=7 => a=1, 3, 4, 6, 9 => thương ko là số tự nhiên
*b=3 => a=1, 2, 4, 5, 7, 8 => thương ko là số tự nhiên
*b=1 => a=3, 4, 6, 1 => tìm được a=3
=> Thương : 103 ; số chia : 31
b) Gọi 3 số tự nhiên liên tiếp là: a, a+1, a+2 \(\left(a\in N\right)\)
Theo bài ra ta có: \(a\left(a+1\right)\left(a+2\right)=2184\)
\(\Leftrightarrow\)\(a\left(a+1\right)\left(a+2\right)-2184=0\)
\(\Leftrightarrow\)\(\left(a-12\right)\left(a^2+15a+182\right)=0\)
\(\Leftrightarrow\)\(a=12\)
Vậy 3 số tự nhiên liên tiếp đó là: 12, 13, 14
46620 = 22 . 32 . 5 . 7 . 37 = (5.7) . (22.32) . 37 = 35 . 36 . 37
=> Vậy 3 số tự nhiên đó là: 35; 36; 37.
12075 = 3 . 52 . 7 . 23 = (3.7) . 23 . 52 = 21 . 23 . 25
=> Vậy 3 số lẻ đó là: 21; 23; 25.
Ta có: 1+2+3+4+...+n=465
=> \(\frac{\left(n+1\right).n}{2}=465\)
=> (n+1).n=465.2
=> (n+1).n=930
=> (n+1).n=31.30
=> (n+1).n=(30+1).30
Vậy n=30.