Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x-1}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(ĐK:5\left(x-2\right)^2\ne0\Leftrightarrow x-2\ne0\Leftrightarrow x\ne2\)
a) \(\lim\limits_{x\rightarrow-2}\dfrac{2x^2+x-6}{x^3+8}=\lim\limits_{x\rightarrow-2}\dfrac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\lim\limits_{x\rightarrow-2}\dfrac{2x-3}{x^2-2x+4}=-\dfrac{7}{12}\).
b) \(\lim\limits_{x\rightarrow3}\dfrac{x^4-x^2-72}{x^2-2x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)}{x+1}=\dfrac{51}{2}\).
c) \(\lim\limits_{x\rightarrow-1}\dfrac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\lim\limits_{x\rightarrow-1}\dfrac{x^4-x^3+x^2-x+1}{x^2-x+1}=\dfrac{5}{3}\).
d) \(\lim\limits_{x\rightarrow1}\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\\ =\lim\limits_{x\rightarrow1}\dfrac{1-x}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-1}{x+1}=-\dfrac{1}{2}\).
\(y=x^2+5+\dfrac{m}{x}\Rightarrow y'=2x-\dfrac{m}{x^2}\)
\(y'=2x+\dfrac{1}{x^2}\Leftrightarrow m=-1\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x+1\right)\sqrt{2x+1}}{\sqrt{5x^3+x+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(1+\dfrac{1}{x}\right)\sqrt{2+\dfrac{1}{x}}}{\sqrt{5+\dfrac{1}{x^2}+\dfrac{2}{x^3}}}=\sqrt{\dfrac{2}{5}}\)
Bạn coi lại, \(x\rightarrow-\infty\) hay \(+\infty\) nhỉ? (Dù a; b không đổi, vẫn là 2 và 5 nhưng \(x\rightarrow+\infty\) thì kết quả phải dương, ko có dấu trừ đằng trước)
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{x^2-x+1}\)