Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)
\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)
b,tự nàm
c,
\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)
\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)
đặt \(\sqrt{8x+1}=a\)
=>a4=10a2+64a+55
nhận thấy phương trình có dạng x4=ax2+bx+c
tìm số m sao cho b2-4(2m+a)(m2+c)=0
sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra
b)đk \(x\ge1\)
\(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)
\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)
\(\Leftrightarrow x+\left|x-2\right|=2014\)
giai 2 pt
pt1 x+x-2=2014
x=1008
pt2 x+2-x=2014(vô lý)
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
Ta có :
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=2012\)
\(\Leftrightarrow\)\(\frac{x-1-2012}{2012}+\frac{x-2-2011}{2011}+\frac{x-3-2010}{2010}+...+\frac{x-2012-1}{1}=0\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\ne0\)
Nên \(x-2013=0\)
\(\Leftrightarrow\)\(x=2013\)
Vậy \(x=2013\)
Chúc bạn học tốt ~
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1+2012=2012\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
\(\Leftrightarrow x=2013\)
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
Bài 1 :
Ta có :
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)
\(+\left(\frac{x+2013}{2011}+1\right)\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Rightarrow x+4024=0\)
\(\Rightarrow x=-4024\)
Bài 2 :
Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)
=> Phương trình trở thành
\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)
\(\Rightarrow5a^2+3a-8=0\)
\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)
Vì \(a\ge0\Rightarrow a=1\)
\(\Rightarrow x^2+2x+1=1\)
\(x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2,0\right\}\)