Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)
\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)
\(\Rightarrow B=0\)
\(\Rightarrow B\)ko phụ thuộc vào g/t của biến
\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)
\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)
\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)
\(\Rightarrow C=26\)
Vậy \(C\)ko phụ thuộc vào giá trị của biến
b: \(B=2x\left(x-3\right)-\left(2x-2\right)\left(x-2\right)\)
\(=2x^2-6x-2x^2+4x+2x-4\)
=-4
a) \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+5\right)\)
\(A=2x^2+x-x^3-2x^2+x^3-x+5\)
\(A=5\)
=> giá trị biểu thức ko phụ thuộc vào biến x
b) \(A=x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
=> \(A=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
=> \(A=\)16
vậy giá trị của biểu thức A ko phụ thuộc vào biến x
\(\left(2x+11\right)\left(3x-5\right)-\left(2x+3\right)\left(3x+7\right)=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\left(đpcm\right)\)
Gía trị biểu thức không phụ thuộc vào biến nghĩa là với mọi x, biểu thức đó có giá trị là 1 số thực.Ta có :
A = 2x(x - 1) - x(2x + 1) - (3 - 3x) = 2x2 - 2x - 2x2 - x - 3 + 3x = (2x2 - 2x2) + (3x - 2x - x) - 3 = -3
B = 2x(x - 3) - (2x - 2)(x - 2) = 2x2 - 6x - 2x2 + 4x + 2x - 4 = (2x2 - 2x2) + (4x + 2x - 6x) - 4 = -4
C = (3x - 5)(2x + 11) - (2x + 3)(3x + 7) = 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21 = (6x2 - 6x2) + (33x - 10x - 14x - 9x) - 55 - 21 = -76 = D = (2x + 11)(3x - 5) - (2x + 3)(3x + 7)
Vậy với mọi x , (A,B,C,D) = (-3;-4;-76;-76) => đpcm
D =
TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC
\(K=x^2-7x+13\)
\(K=x^2-2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+13\)
\(K=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}+13\)
\(K=\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\)
Nhận xét: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=0\Rightarrow x=\frac{7}{2}\)
Vậy \(minK=\frac{3}{4}\Leftrightarrow x=\frac{7}{2}\)
TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC
\(M=-x^2+4x+4\)
\(M=-\left(x^2-4x-4\right)\)
\(M=-\left(x^2-4x+4-8\right)\)
\(M=-\left[\left(x-2\right)^2-8\right]\)
\(M=-\left(x-2\right)^2+8\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+8\le8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxM=8\Leftrightarrow x=2\)