K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

a, BE=CD và BE vuông góc với CD.

b, KL là trung điểm cuarDE và AK=1/2BC.

a: Vẽ DI,EK vuông góc AH

Xét ΔIDA và ΔHAB có

góc DIA=góc AHB

AD=AB

góc A1=góc ABH(=90 độ-góc A2)

=>ΔIDA=ΔHAB

=>ID=AH(1)

Xét ΔKAE và ΔHCA có

góc EKA=góc AHC

AE=AC

góc EAK=góc HCA

=>ΔKAE=ΔHCA

=>AH=EK=DI

Gọi giao của AH và DE là N

Xét ΔDIN và ΔKEN co

góc DIN=góc EKN

DI=EK

góc ENK=góc DNK

=>ΔDIN=ΔKEN

=>EN=DN

=>N là trung điểm của DE

b: Lấy F đối xứng A qua M

Xet ΔAMB và ΔFMC có

MA=MF

góc AMB=góc FMC

MB=MC

=>ΔAMB=ΔFMC

=>AB=CF và góc B=góc FCM

=>góc ACF=góc ACB+góc B=180 độ-góc BAC

Gọi giao của AM và DE là I

Xet ΔACF và ΔEAD có

AC=ED

CF=AD

góc EAD=góc ACF

=>ΔACF=ΔEAD

=>AF=DE

=>AM=1/2DE

ΔAMB=ΔFMC

=>góc BAM=góc MFC

ΔACF=ΔEAD

=>góc MFC=góc EDA

=>góc BAM=góc EDA

=>góc EDA+góc DAI=90 độ

=>AM vuông góc DE

A B C D E M N H

a) Xét \(\Delta ABC\)\(\Delta ADE\):

AB=AD(gt)

\(\widehat{BAC}=\widehat{DAE}=90^o\)

AC=AE(gt)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

=> BC=DE ( 2 cạnh tương ứng)

=> Đpcm

b) Ta có \(\Delta ABD\)vuông cân tại A

=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)

\(\Delta AEC\)vuông cân tại A

=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)

=> \(\widehat{BDA}=\widehat{ECA}=45^o\)

Mà 2 góc này ở vị trí so le trong

=> BD//CE

=> Đpcm

c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM

Gọi giao điể của NA và MC là I

Xét \(\Delta NMC\)có:

\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)

Mà 2 đường cao này cắt nhau tại A

=> A là trực tâm của \(\Delta MNC\)

=> \(CA\perp NM\)

=> Đpcm

d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)

=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)

=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)

=> \(\widehat{AED}=\widehat{MAE}\)

=> \(\Delta MAE\)cân tại M

=> MA=ME (1)

Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)

=> \(\widehat{ADE}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)

=> \(\widehat{ADE}=\widehat{DAM}\)

=> \(\Delta DAM\)cân tại M

=> MD=MA (2)

Từ (1) và (2)

=> MA=MD=ME

=> \(MA=\frac{1}{2}DE\)

=> Đpcm

P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
7 tháng 3 2021

Dễ nhưng dài nên lười đánh máy quá:")

a) Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{DAI}+\widehat{DAB}+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+90^o+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+\widehat{BAH}=90^o\)

=> \(\widehat{DAI}=\widehat{ABH}\)( cùng phụ BAH)

Xét ∆ABH và ∆DAI:

AB=AD(∆ABD vuông cân tại A)

\(\widehat{AHB}=\widehat{DIA}=90^o\)

\(\widehat{ABH}=\widehat{DAI}\left(cmt\right)\)

=>∆ABH=∆DAI (ch.gn)

b) Theo câu a: ∆ABH=∆DAI

=> AH=DI (2 cạnh t/ứ)(1)

Cmtt câu a ta được ∆AKE=∆CHA 

=> EK=AH (2 canh t/ứ) (2)

Từ (1) và (2) suy ra DI=EK

c) Gọi giao điểm của DE và HA là F

Xét ∆FID và ∆FKE:DI=K (cm ở câu b)

\(\widehat{FID}=\widehat{FKE}=90^o\)

\(\widehat{IFD}=\widehat{KFE}\) (2 góc đối đỉnh)

=> ∆FID=∆FKE (cgv.gn)

=> DF=EF (2 canh t/ứ)

=> F là trung điểm của DE 

=> AH cắt DE tại trung điểm của DE