K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2020

4 2 A B C D O I

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên \(\Delta ABC\) cân tại A.

Lại có AO là tia phân giác của góc A nên \(AO\perp BC\) (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét tam giác CBD có :

CI = IB

CO = OD (bán kính)

=> BD // HO (HO là đường trung bình của BCD) => BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

AC2 = OA2 – OC2 = 42 – 22 = 12

\(\Rightarrow AC=\sqrt{12}=2\sqrt{3}\left(cm\right)\)

Và \(\sin\widehat{OAC}=\frac{OC}{OA}=\frac{2}{4}=\frac{1}{2}\Rightarrow=\widehat{OAC}=30^o\)

Do đó \(\widehat{BAC}=2\widehat{OAC}=60^o\)

Tam giác ABC cân có \(\widehat{A}=60^o\)nên là tam giác đều

Do đó : \(AB=BC=AC=2\sqrt{3}\left(cm\right)\)

10 tháng 8 2021

HO lòi ở đâu ra thế? phải là OI chứ

 

26 tháng 12 2022

AB=AC (tính chất 2 tiếp tuyến cắt nhau)

⇒ΔABC cân đỉnh A có AO là phân giác cũng là đường cao

⇒AO⊥BC

 

b) ΔBCD nội tiếp đường tròn (O) đường kính CD

⇒BCD⊥B⇒BD⊥BC

⇒AO∥BD (vì cùng ⊥BC)

 

c) Gọi AO∩BC=H

Áp dụng định lý Pitago vào ΔABO có:

AB2=AO2−OB2=42−22=12

⇒AB=23=AC

Hệ thức lượng vào Δ vuông ABO

1BH2=1AB2+1BO2=112+122=13

⇒BH=3⇒BC=2BH=23.

Có thể soai ai bt dc

10 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

A C 2   =   O A 2   –   O C 2   =   4 2   –   2 2   =   12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

21 tháng 12 2022

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

b: Xét (O) có

ΔCBD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tai B

=>BD//OA

13 tháng 12 2020

Sửa đề: Cho đường tròn(O) có A là điểm nằm bên ngoài đường tròn

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: OB=OC và AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

b) Xét (O) có 

ΔDBC nội tiếp đường tròn có DC là đường kính

nên ΔDBC vuông tại B(Định lí)

⇒DB⊥BC

Ta có: DB⊥BC(cmt)

AO⊥BC(cmt)

Do đó: DB//AO(Định lí 1 từ vuông góc tới song song)