K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

Đề sai rồi bạn

10 tháng 4 2022

\(a,=\dfrac{1}{\sqrt{x}+1}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}-x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{x-\sqrt{x}-x\sqrt{x}-x}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{-\sqrt{x}\left(x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{-x-1}{x-1}\)

Vậy\(P=\dfrac{-x-1}{x-1}\)

\(b,\) Thay \(x=\dfrac{1}{\sqrt{2}}\) vào \(P\) ta có :

\(P=\dfrac{-\left(\dfrac{1}{\sqrt{2}}\right)-1}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{-\sqrt{2}}{2}\)

Vậy \(P=\dfrac{-\sqrt{2}}{2}\) khi \(x=\dfrac{1}{\sqrt{2}}\)

 

11 tháng 4 2022

sai r bạn ơi

 

1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{2}{x-1}\)

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Để A là số nguyên thì \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)

19 tháng 10 2019

Mn ơi giúp mình với. Please!!!!!!!!!!!!!!!!!!!!!!!!!!