Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)M=[-1]/4x^3y^4 . (3x^2y)^2`
`=>M=[-1]/4x^3y^4 . 9x^4y^2`
`=>M=([-1]/4 . 9)(x^3 . x^4)(y^4 . y^2)`
`=>M=[-9]/4x^7y^6`
`@` Bậc: `7 + 6 = 13`
`@` Biến: `x^7y^6`
`@` Hệ số: `[-9]/4`
__________________________________________
`b)` Thay `x =-1;y=2` vào `M` có:
`M=[-9]/4 . (-1)^7 . 2^6`
`M=[-9]/4 . (-1) . 64`
`M = 144`
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
a) Ta có: \(M=\left(\dfrac{1}{2}x^2y\right)\cdot\left(\dfrac{2}{3}xy\right)^2\)
\(=\dfrac{1}{2}x^2y\cdot\dfrac{4}{9}x^2y^2\)
\(=\dfrac{2}{9}x^4y^3\)
b) Hệ số là \(\dfrac{2}{9}\)
Phần biến là \(x^4;y^3\)
c) Bậc là 7
d) Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{2}{9}\cdot\left(-1\right)^4\cdot2^3=\dfrac{2}{9}\cdot8=\dfrac{16}{9}\)
a) M = \(\left(\frac{-2}{3}x^2y\right).\left(\frac{-9}{2}xy\right)=\left(\frac{-2}{3}.\frac{-9}{2}\right).\left(x^2.x\right).\left(y.y\right)=3x^3y^2\)
Hệ số : 3
Phần biến : x3y2
Bậc của đa thức : 5
b) Thay x = -1 ; y = 2 vào đơn thức M ta được :
M = 3 . ( -1 )3 . 22 = -12
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
Câu 1 :
a, \(4x^4y^2.9x^2y^4z^2=36x^6y^6z^2\)
b, bậc 14 ; hệ số 36
biến x^6y^6z^2
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)