Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)
hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
1) Bài này có 2 cách giải
Cách 1:
để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)
ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)
trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:
\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)
Do đó sử dụng BĐT AM-GM ta có:
\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)
Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)
Cách 2:
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)
Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)
tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)
Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được
\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)
\(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
1/ \(\Leftrightarrow a^2b-a^3bc-b^2c+ab^2c^2=ab^2-ab^3c-a^2c+a^2bc^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=abc\left(a^2-bc-b^2+ac\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=abc\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow S=2^2=4\)
Câu 2:
\(P=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Hoặc có thể dùng AM-GM:
\(\frac{a^3}{b+c}+\frac{1}{4}a\left(b+c\right)\ge a^2\) ; \(\frac{b^3}{c+a}+\frac{1}{4}b\left(c+a\right)\ge b^2\) ; \(\frac{c^3}{a+b}+\frac{1}{4}c\left(a+b\right)\ge c^2\)
Cộng vế với vế:
\(P+\frac{1}{2}\left(ab+bc+ca\right)\ge a^2+b^2+c^2\)
\(\Leftrightarrow P\ge a^2+b^2+c^2-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{a^2+b^2+c^2}{2}\)