K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

\(2A=2+2^2+2^3+...+2^{201}\)

\(2A-A=\left(2+2^2+...+2^{201}\right)-\left(1+2+...+2^{200}\right)\)

\(A=2^{201}-1\)

\(A+1=2^{201}-1+1\)

\(A+1=2^{201}\)

9 tháng 8 2017

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

15 tháng 8 2016

Ta có: A=1+2+22+23+24+…+2200

=>2A=2+22+23+24+25+…+2201

=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200

=>A=2201-1

=>A+1=2201

21 tháng 3 2020

Ồ hình naruto đẹp đấy.

30 tháng 9 2016

1.

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22 + 23 + 24 + ... + 2201

2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

2.

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

11 tháng 7 2021

2A = 2 + 22 + 23 + ... + 2201

A = 2A - A = 2 + 22 + 23 + ... + 2201 - ( 1 + 2 + 22 + 23 + ... + 2200 )

= 2 + 22 + 23 + ... + 2201 - 1 - 2 - 22 - 23 - ... - 2200 = 2201 - 1

=> A + 1 = 2201 - 1 + 1 = 2201

11 tháng 7 2021

A+1=2201 

Đây là câu trả lời của tui nha.

17 tháng 10 2015

Ta có: A=1+2+22+23+24+…+2200

=>2A=2+22+23+24+25+…+2201

=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200

=>A=2201-1

=>A+1=2201

17 tháng 10 2015

 2A = 2 + 2^2+ 2^3+...+2^101
2A-A = 2^101- 1
=> A = 2^101- 1
=> A + 1 = 2^101
 

 

8 tháng 6 2016

2A=2+2^2+....+2^201

A = 2^201-1( lấy 2A trừ A)

=> A+1 là lũy thừa của 2