K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .

Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)

Giải hệ phương trình ta tìm được :

\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)

Vậy số dư trong phéo chia là \(-x\)

Bài 2 : Mình suy nghĩ sau !

Chúc bạn học tốt

2 tháng 5 2019

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

22 tháng 3 2020

Đa thức 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)

Theo bài ra ta có hệ phương trình :

\(\hept{\begin{cases}f\left(1\right)=a+b+c+d=6\\f\left(2\right)=8a+4b+2c+d=6\\f\left(3\right)=27a+9b+3a+d=6;f\left(-1\right)=-a+-c+d=-18\end{cases}}\) ( Vì cái này phải chia ra làm 4 nhưng không có nên mình phải viết lên trên dòng 3 cái f(-1) bạn phải cho xuống dòng 4 nha )

giải hệ pt ta đc :

\(\hept{\begin{cases}a=1\\b=-6\\c=11;d=0\end{cases}}\)

Vậy đa thức bậc 3 là : \(f\left(x\right)=x^3-6x^2+11x\)

18 tháng 3 2015

các bạn giải hộ mình gấp

 

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)