K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

mình muốn âm điểm

28 tháng 7 2021

\(a,x-\sqrt{x-4\sqrt{x}+4}=8\)

\(x-\sqrt{\left(\sqrt{x}-2\right)^2}=8\)

\(x-\left|\sqrt{x}-2\right|=8\)

\(TH1:0\le x\le2\)

\(x-2+\sqrt{x}=8\)

\(x+\sqrt{x}-10=0\)

\(\sqrt{\Delta}=1-\left(4.-10\right)=\sqrt{41}\)

\(\orbr{\begin{cases}x_1=\frac{\sqrt{41}-1}{2}\left(KTM\right)\\x_2=\frac{-\sqrt{41}-1}{2}\left(KTM\right)\end{cases}}\)

\(TH2:x>2\)

\(x-\sqrt{x}+2=8\)

\(x-\sqrt{x}-6=0\)

\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)

\(\orbr{\begin{cases}\sqrt{x}+2=0\\\sqrt{x}-3=0\end{cases}\orbr{\begin{cases}\sqrt{x}=-2\left(KTM\right)\\x=9\left(TM\right)\end{cases}}}\)

\(b,\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)

\(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\sqrt{5}^2-2\sqrt{5}+1}=0\)

\(\left|\frac{1}{2}x+1\right|-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

\(\left|\frac{1}{2}x+1\right|-\sqrt{5}+1=0\)

\(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)

\(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}\orbr{\begin{cases}\frac{1}{2}x=\sqrt{5}-2\\\frac{1}{2}x=-\sqrt{5}\end{cases}\orbr{\begin{cases}x=2\sqrt{5}-4\\x=-2\sqrt{5}\end{cases}}}}\)

\(c,\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}+1\right|=4\)

\(\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)

\(\sqrt{2x-5}=0\)

\(x=\frac{5}{2}\left(TM\right)\)

27 tháng 7 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=9+16=25\Rightarrow BC=5\)cm 

*Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm 

-> CH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm 

27 tháng 7 2021

b, Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=9.16=144\Rightarrow AH=12\)cm 

-> CH + BH = BC = 16 + 9 = 25

* Áp dụng hệ thức : \(AB^2=BH.BC=9.25=225\Rightarrow AB=15\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=400\Rightarrow AC=20\)cm 

26 tháng 7 2021

Đặt \(\overline{ab}=x;\overline{cd}=y\Rightarrow\overline{abcd}=100\overline{ab}+\overline{cd}\)

                                                     \(=100x+y\left(10\le x\le99;y\ge0\right)\)

\(\Rightarrow100x+y=\left(x+y\right)^2\)

                          \(=x^2+2xy+y^2\left(1\right)\)

\(\Rightarrow x^2+\left(2y-100\right)x+\left(y^2-y\right)=0\left(2\right)\)

Để \(x,y\inℤ\)thoản mãn (1) \(\Rightarrow\left(2\right)\)có nghiệm nguyên 

\(\Rightarrow\Delta'=\left(y-50\right)^2-\left(y^2-y\right)\)

          \(=y^2-100y+2500-y^2+y\)

          \(=-99y+2500\)

\(\Rightarrow\Delta'\ge0\Leftrightarrow2500-99y\ge0\)

\(\Rightarrow y\le25\)

(1) có nghiệm nguyên khi \(\sqrt{\Delta'}\)là số nguyên 

\(\Rightarrow y\in\left\{0;1;25\right\}\)

\(\cdot y=0\Rightarrow\sqrt{\Delta'}=50\Rightarrow\orbr{\begin{cases}x_1=\left(50-y\right)+\sqrt{\Delta'}=50+50=100\\x_2=\left(50-y\right)-\sqrt{\Delta'}=50-50=0\end{cases}\left(loại\right)}\)

tính tương tự với y=1 ; y =25 nha cậu

DD
25 tháng 7 2021

Ta có: 

\(A=\left(1+tan^2x\right)cos^2x-\left(1+cot^2x\right)\left(cos^2x-1\right)\)

\(=\frac{1}{cos^2x}.cos^2x-\frac{1}{sin^2x}.sin^2x\)

\(=1-1=0\)

\(B=tan72^o-cot18^o+sin^230^o+sin^260^o\)

\(=tan72^o-tan72^o+sin^230^o+cos^230^o\)

\(=1\)

25 tháng 7 2021
Đáp án đúng =1 nhé!
25 tháng 7 2021

e, Đặt \(A=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(=3-\sqrt{5}+2\sqrt{9-5}+3+\sqrt{5}=6+2.2=10\)

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)

DD
25 tháng 7 2021

ĐK: \(x>0,x\ne1\).

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

\(x-\sqrt{x}+1=x-\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu \(=\)khi \(x=\frac{1}{4}\).

\(Q=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Qx-Q\sqrt{x}+Q=2\sqrt{x}\)

\(\Leftrightarrow Qx-\sqrt{x}\left(Q+2\right)+Q=0\)

Với \(Q=0\Rightarrow x=0\)không thỏa mãn. 

Với \(Q\ne0\)

Đặt \(\sqrt{x}=t>0\).

\(Qt^2-t\left(Q+2\right)+Q=0\)

\(\Delta=\left(Q+2\right)^2-4Q^2=-3Q^2+4Q+4\)

Phương trình có nghiệm suy ra \(-3Q^2+4Q+4\ge0\Leftrightarrow-\frac{2}{3}\le Q\le2\)

mà \(Q\inℤ\)\(\Rightarrow Q\in\left\{0,1,2\right\}\).

Với từng giá trị \(Q\)ta thế trực tiếp tìm giá trị của \(x\).

23 tháng 7 2021

a;b bạn tự làm nhé, hđt số 3 là ra 

c, \(\sqrt{7-2\sqrt{10}}-\sqrt{5-2\sqrt{6}}-\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{5}+\sqrt{3}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{3}+\sqrt{2}-\sqrt{5}+\sqrt{3}=0\)