K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

\(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}\)

\(4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3+2\sqrt{2x-3}+1}\)

\(4+\sqrt{\left(\sqrt{2x-3}+3\right)^2}=\sqrt{\left(\sqrt{2x-3}+1\right)^2}\)

\(4+\left|\sqrt{2x-3}+3\right|=\left|\sqrt{2x-3}+1\right|\)

\(4+\sqrt{2x-3}+3=\sqrt{2x-3}+1\)

\(7+\sqrt{2x-3}=1+\sqrt{2x-3}\)(vô lý)

pt vô nghiệm

\(\)

3 tháng 9 2021

lại nhầm nữa sr

bạn sủa dòng 3 thành

\(4+\sqrt{\left(\sqrt{2x-3}-3\right)^2}=\sqrt{\left(\sqrt{2x-3}+1\right)^2}\)

\(4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}+1\right|\)

\(TH1:x\le6\)

\(4+3-\sqrt{2x-3}=-\sqrt{2x-3}-1\)

\(7-\sqrt{2x-3}=-\sqrt{2x-3}-1\)

\(7=-1\)vô nghiệm
\(TH2:x>6\)

\(4+\sqrt{2x-3}-3=\sqrt{2x-3}+1\)

\(\sqrt{2x-3}+1=\sqrt{2x-3}+1\)pt vô số nghiệm

\(\)

24 tháng 7 2020

a) tam giác ABc có CF là đường phân giác => \(\frac{BF}{BC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{AB\cdot BC}{BC+AC}\)

tương tự cũng có \(CE=\frac{AC\cdot BC}{BC+AB}\)

tam giác BCE có CD là đường phân giác => \(\frac{BD}{BC}=\frac{DE}{CE}\)

=> \(\frac{BD}{BC}=\frac{DE}{CE}\)do đó \(\frac{BD}{BE}=\frac{AB+AC}{AB+BC+AC}\) tương tự \(\frac{CF}{CD}=\frac{AB+BC+AC}{AC+BC}\)

tam giác ABC vuông tại A => AB2+AC2=BC2 => (AB+BC+AC)2=2(AB+BC)(AC+BC)

\(\Rightarrow\frac{AB+BC+AC}{AC+BC}=\frac{2\left(AB+AC\right)}{AB+BC+AC}\)

do đó \(\frac{CF}{CD}=\frac{2BD}{BE}\Rightarrow BE\cdot CF=2BD\cdot CD\left(đfcm\right)\)

24 tháng 7 2020

gọi I là giao của AH,BM,CF. K là điểm đối xứng của I qua M

tứ giác IAKC là hình bình hành => AI//CK, AK//IC

tam giác ABC có IF//AK => \(\frac{BF}{AF}=\frac{BI}{KI}\), tam giác BCK có IH//CK => \(\frac{BI}{KI}=\frac{BH}{CH}\)

tam giác BAK có CF là phân giác => \(\frac{BF}{AF}=\frac{BC}{AC}\)do đó \(\frac{BH}{CH}=\frac{BC}{AC}\)=> BH.AC=CH.BC

tam giác ABC vuông ở A, AH là đường cao => AC2=CH.BC

ta có BH.AC=AC2(=CH.BC) => BH=AC

tam giác ABH vuông tại H => cosB=\(\frac{BH}{AH}=\frac{AC}{AB}\); tam giác ABC vuông ở A => tanB=\(\frac{AC}{AB}\)

do đó cosB=tanB. mà tan2B+1=\(\frac{\sin^2B}{\cos^2B}+1=\frac{1}{\cos^2B}\)

ta có \(\frac{1}{\cos^2B}=\frac{1}{\tan^2B}\)=> tan2B+1=\(\frac{1}{\tan^2B}\)

=> tan4B+tan2B=1 => \(\left(\tan^2B+\frac{1}{2}\right)^2=\frac{5}{4}\tan^2B+\frac{1}{2}=1\)

\(\Rightarrow\tan B=\sqrt{\frac{\sqrt{5}-1}{2}}\Rightarrow\frac{AB}{AC}=\sqrt{\frac{2\sqrt{5}-2}{2}}\)

2 tháng 9 2021

câu này chủ yếu tập trung vào công thức nhé bạn 

cos bình cộng sin bình bằng 1

thế cos vào tính sin 

tan bằng sin chia cos

cot a bằng cos chia sin 

thế nào ra nhé cẩn thận bạn có thể thiếu trường hợp nhé cám ơn nhiều 

cần hõi gì cứ nhắn THẰNG THẦY LỢI YOUTUBE

NM
2 tháng 9 2021

ta có : \(sina=\sqrt{1-cos^2a}=\sqrt{1-0.4^2}=\frac{\sqrt{21}}{5}\)

ta có : \(\hept{\begin{cases}tana=\frac{sina}{cosa}=\frac{\sqrt{21}}{2}\\cota=\frac{1}{tana}=\frac{2}{\sqrt{21}}\end{cases}}\)

NM
2 tháng 9 2021

để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)

thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)

\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)

b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)

1 tháng 9 2021

Để y = 0 thì \(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)^2\cdot x+\left(\sqrt{2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)\left[\left(\sqrt{2}-1\right)x+1\right]=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)x+1=0\Leftrightarrow x=-\frac{1}{\sqrt{2}-1}=-1-\sqrt{2}\)

NM
1 tháng 9 2021

hàm số trên đồng biến vì hệ số của x là 

\(3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2>0\)

1 tháng 9 2021

Cách đơn giản : Xét hệ số góc \(3-2\sqrt{2}\)ta có \(9>8\Rightarrow3>2\sqrt{2}\Leftrightarrow3-2\sqrt{2}>0\)

Vậy hàm số trên đồng biến 

Cách không đơn giản : Xét \(y=f\left(x\right)=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

Hàm số trên xác định với mọi x . Lấy các giá trị x1 , x2 sao cho x1 < x2

Ta có : \(f\left(x_1\right)-f\left(x_2\right)=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left[\left(3-2\sqrt{2}\right)x_2+\sqrt{2}-1\right]\)

\(=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left(3-2\sqrt{2}\right)x_2-\sqrt{2}+1\)

\(=\left(3-2\sqrt{2}\right)\left(x_1-x_2\right)< 0\)( vì x1 < x2 )

=> f(x1) < f(x2) . Vậy hàm số đã cho đồng biến

1 tháng 9 2021

dùng công thức : căn của (x1-x2)^2 + (y1-y2)^2 là ra khoảng cách giữa 2 điểm, tìm 3 khoảng cách rồi suy ra tam giác đều