Cho hình vuông ABCD có A thuộc d1: x + 2y-3= 0, C thuộc đường d2: x+y -4 =0. Tìm tọa độ các đỉnh còn lại của hình vuông biết B,D thuộc đường thẳng d3: y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
cmr tồn tại duy nhất bộ nghiệm số nguyên dương (a,n) sao cho
\(a^{n+1}\)-\(\left(a=1\right)^n\)=2001
\(a^{n+1}-\left(a=1\right)^n=2001\left(n\in N\right)\)
\(\Rightarrow a^{n-1}-1^n=2001\)
\(\Rightarrow a^{n-1}-1=2001\)
\(\Rightarrow a^{n-1}=2001+1\)
\(\Rightarrow a^{n-1}=2002\)
Mk chỉ biết giải TH:n dương và chỉ giải đc thế thôi
Chúc bn học tốt