cho hình vuông abcd và 2018 đường thẳng cùng có tính chất chia hình vuông này thành h tứ giác có tỉ số diện tích = 2/3. chứng minh rằng có ít nhất 505 đường thẳng đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{25}{2}\)
tại a=b=1/2
thêm ít cách
Cách 1:
Áp dụng BĐT bunhiacopxki ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)
\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)
Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )
ÁP dụng BĐT AM-GM ta có:
\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)
Thay (2) vào (1) ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)
\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 2:
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)
\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)
\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)
ÁP dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)
\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)
\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1)
ÁP dụng BĐT AM-GM ta có:
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)
Thay (2) vào (1) ta được:
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)
Cộng (3)+(4)+(5)+(6) ta được:
\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 3:Làm tắt thui ạ
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)
\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)
\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)
giống cách 2 rồi làm nốt
Gọi K là giao điểm của AB và EF
O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật
Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)
EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)
=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB
=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )
=> KBFH là hình bình hành
=> KB //=HF ( 1)
Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )
và GK // BD ( giả thiết )
=> GKBD là hình bình hành
=> KB // = GD ( 2)
Từ ( 1) và (2) => HF // = GD
=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )
=> HFDG là hình chữ nhật
=> HD = FG ( hai đường chéo bằng nhau)
Gọi x là số lần tăng lên của vi khuẩn sau 30 phút
Ban đầu chỉ có 50 con => Sau 30 phút: 50x con
=> Sau 1 h : 50x2 con . => Sau 1h 30 p : 50x3 con
=> Sau 2h: 50x4 con
.....
=> Sau 24h : 50x48 con
Theo bài ra : Sau 2h vi khuẩn là 4050 con
Do đó ta có pt: 50x4= 4050 <=> x = 3
Vậy sau 1 ngày ( = 24 h ) số vi khuẩn sẽ là: 50.x48 = 50.348 con
a) Xét \(\Delta AEC\) và \(\Delta ADB\) có :
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\end{cases}}\)
\(\Rightarrow\Delta AEC\) đồng dạng \(\Delta ADB\) (g.g)
b) Ta có : \(\Delta AEC\) đồng dạng \(\Delta ADB\)
\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\hept{\begin{cases}\widehat{A}chung\\\frac{AE}{AD}=\frac{AC}{AB}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADE\) đồng dạng \(\Delta ABC\) (c.g.c)
c) Xét \(\Delta ABF\) và \(\Delta CBE\) có :
\(\hept{\begin{cases}\widehat{B}hung\\\widehat{AFB}=\widehat{CEB}=90^o\end{cases}}\)
\(\Rightarrow\Delta ABF\) đồng dạng \(\Delta CBE\) (g.g)
\(\Rightarrow\frac{AB}{CB}=\frac{BF}{BE}\Rightarrow BE\cdot AB=BC\cdot BF\)
Chứng minh tương tự ta có : \(\Delta BDC\) đồng dạng \(\Delta AFC\) (g.g)
\(\Rightarrow\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow CD\cdot AC=FC\cdot BC\)
Khi đó : \(BE.AB+CD.AC=BF.BC+FC.BC=BC.BC=BC^2\)
a, Xét \(\Delta AEC\)và \(\Delta ABD\)có
\(\widehat{AEC}=\widehat{ADB}=90^0\)
\(\widehat{A}chung\)
\(\Rightarrow\)\(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g)
b, Vì \(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g) nên \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét \(\Delta ADE\)và \(\Delta ABC\)có
\(\frac{AD}{AC}=\frac{AE}{AB}\),\(\widehat{A}\)chung
\(\Rightarrow\)\(\Delta ADE\)đồng dạng \(\Delta ABC\)(c.g.c)
Các câu còn lại khi nào rảnh giải tiếp :P
+) Kẻ: AJ // CI //EF; I; J thuộc BD và M thuộc EF
Xét \(\Delta\)BAJ có: FM // AJ
=> \(\frac{BA}{BF}=\frac{BJ}{BM}\)
Xét \(\Delta\)BCI có: ME // IC
=> \(\frac{BC}{BE}=\frac{BI}{BM}\)
Từ hai điều trên => \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BJ}{BM}+\frac{BI}{BM}=\frac{BI+BJ}{BM}\)(1)
Xét \(\Delta\)AJO và \(\Delta\)CIO có:
OA = OC ( ABCD là hình bình hành)
^AOJ = ^COI ( đối đỉnh)
^AJO = ^CIO ( AJ // CI , so le trong )
=> \(\Delta\)AJO = \(\Delta\)CIO ( g-c-g)
=> JO = IO
KHi đó BI + BJ = BO + OI + BO - JO = 2 BO + (IO - JO) = 2 BO = 2.2. BM = 4BM ( vì M là trung điểm BO )
=> BI + BJ = 4BM Thế vào (1)
=> \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{4BM}{BM}=4\)(2)
+) Kẻ BH // BG //FK với H; G thuộc AC
Chứng minh tương tự như trên ta suy ra: \(\frac{BA}{AF}+\frac{AD}{AK}=4\)(3)
Cộng (2) + (3) vế theo vế:
\(\frac{BA}{BF}+\frac{BC}{BE}+\frac{BA}{AF}+\frac{AD}{AK}=8\)mà AD = BC
=> \(AB\left(\frac{1}{BF}+\frac{1}{AF}\right)+BC\left(\frac{1}{BE}+\frac{1}{AK}\right)=8\)(4)
Mặt khác: \(\frac{1}{BF}+\frac{1}{AF}=\frac{1^2}{BF}+\frac{1^2}{AF}\ge\frac{\left(1+1\right)^2}{BF+AF}=\frac{4}{AB}\) và \(\frac{1}{BE}+\frac{1}{AK}\ge\frac{4}{BE+AK}\)
KHi đó: \(8\ge AB.\frac{4}{AB}+BC.\frac{4}{BE+AK}\)
<=> \(BE+AK\ge BC\)
Dấu "=" xảy ra <=> BF = AF và BE = AK
Hay F là trung điểm AB.