Một miếng đất hình chữ nhật có chu vi 56m . Nếu giảm chiều rộng 2m và tăng chiều dài 4m thì diện tích tăng 8 m2. Tính kích thước ban đầu của miếng đất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét 2 tg vuông HAC và tg vuông ABC có
\(\widehat{ACH}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAC đồng dạng với tg ABC (g.g.g)
b/
Xét tg vuông ABH
\(AH^2=AB^2-BH^2\) (Pitago) (1)
Xét tg vuông ACH có
\(AH^2=AC^2-CH^2\) (Pitago) (2)
Cộng 2 vế của (1) và (2) có \(2.AH^2=\left(AB^2+AC^2\right)-\left(BH^2+CH^2\right)\) (3)
Ta có
\(BH^2+CH^2=\left(BH+CH\right)^2-2.BH.CH=BC^2-2.BH.CH\)
Xét tg vuông ABC có \(AB^2+AC^2=BC^2\)
Thay vào (3)
\(2.AH^2=BC^2-BC^2+2.BH.CH\Rightarrow AH^2=BH.CH\)
c/
Xét tg ABH có
\(\dfrac{IH}{IA}=\dfrac{BH}{BA}\) (1) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)
Xét tg ACH có
\(\dfrac{KH}{KC}=\dfrac{AH}{AC}\)(2) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)
Xét tg vuông ABH và tg vuông ABC có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg ABH đồng dạng với tg ABC (g.g.g)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AH}{AC}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{IH}{IA}\) => IK//AC (Talet đảo trong tam giác) (đpcm)
(x + 1) ^ 2 + |x - 1| = x ^ 2 + 4
ó/x-1/=x^2+4-(x+1)^2
ó/x-1/=x^2+4-x^2-2x-1
ó/x-1/=-2x+3
Nếu x-1≥0 óx≥1 thì /x-1/=x-1
Ta có pt : x-1=-2x+3
óx+2x=3+1
ó3x=4
óx=4/3(t/m)
Nếu x-1 <0 óx<1 thì /x-1/=1-x
Ta có pt :1-x=-2x+3
ó-x+2x=3-1
óx=2(loại)
Vậy pt trình có nghiệm là x=4/3
bn oi "ó " là dấu khi và chỉ khi ("<=>") , do tải lên bị lỗi nên nó như zậy . sorry nhé !
đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2
nhows
\(C=\dfrac{x}{2x+3}\)
Điều kiện: \(x\ne-\dfrac{3}{2}\)
Để cho \(C\inℤ\) thì \(\dfrac{x}{2x+3}\inℤ\)
\(\Rightarrow x⋮2x+3\)
\(\Rightarrow2x⋮2x+3\)
\(\Rightarrow2x+3-3⋮2x+3\)
\(\Rightarrow3⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
2x+3 | -3 | -1 | 1 | 2 |
x | -3 | -2 | -1 | \(-\dfrac{1}{2}\left(l\right)\) |
Vậy \(C\inℤ\) khi \(x\in\left\{-3;-2;-1\right\}\)
Nửa chu vi miếng đất là:
\(56:2=28m\)
Gọi chiều rộng của miếng đất là \(x\left(0< x< 28\right)\)
\(\rightarrow\)Chiều dài của miếng đất là \(28-x\)
\(\rightarrow\)Chiều rộng miếng đất khi giảm đi 2 mét là \(x-2\)
\(\rightarrow\)Chiều dài miếng đất khi tăng thêm 4 mét là \(28-x+4=32-x\)
Theo đề cho, ta có phương trình sau:
\(\left(x-2\right)\left(32-x\right)-x\left(28-x\right)=8\)
\(\Leftrightarrow32x-x^2-64+2x-28x+x^2=8\)
\(\Leftrightarrow32x-28x+2x-x^2+x^2=64+8\)
\(\Leftrightarrow6x=72\Leftrightarrow x=12\)
Vậy chiều dài của miếng đất là \(28-a=28-12=16m\)