Cho a,b,c là số do 3 cạnh cua rtam giác
a) CHứng minh abc \(\ge\)(a+b-c)(c+a-b)
b) Biết chu vi tam giác =2, tìm GTNN của biểu thức P=\(a^2+b^2+c^2+2abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mn ơi giúp mình với. Please!!!!!!!!!!!!!!!!!!!!!!!!!!
Đặt \(A=\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}\)
\(\Rightarrow A^2=6-\sqrt{11}-2\sqrt{\left(6-\sqrt{11}\right)\left(6+\sqrt{11}\right)}+6+\sqrt{11}\)
\(\Leftrightarrow A^2=12-2\sqrt{36-11}\)
\(\Leftrightarrow A^2=12-2.\sqrt{25}\)
\(\Leftrightarrow A^2=2\)(1)
Vì \(\hept{\begin{cases}\sqrt{6-\sqrt{11}}>0\\\sqrt{6+\sqrt{11}}>0\end{cases}}\)và \(6-\sqrt{11}< 6+\sqrt{11}\)
\(\Rightarrow A=\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}< 0\)(2)
Từ(1),(2) \(\Rightarrow A=-\sqrt{2}\)
a) Hình như đề bài phải là \(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Ta có: \(4a^2=\left[\left(a+b-c\right)+\left(a+c-b\right)\right]^2\ge4\left(a+b-c\right)\left(a+c-b\right)\)
\(\Leftrightarrow a^2\ge\left(a+b-c\right)\left(a+c-b\right)\)
Tương tự, nhân vế với vế -> dpcm
b) Ta có a + b + c = 2:))
Theo nguyên lí Dirichlet trong 3 số \(a-\frac{2}{3};b-\frac{2}{3};c-\frac{2}{3}\) luôn tồn tại 2 số đồng dấu. Giả sử đó là \(a-\frac{2}{3};b-\frac{2}{3}\).
Ta có: \(\left(a-\frac{2}{3}\right)\left(b-\frac{2}{3}\right)\ge0\Leftrightarrow2abc\ge\frac{4}{3}ac+\frac{4}{3}bc-\frac{8}{9}c\)
Do đó \(P\ge a^2+b^2+c^2+\frac{4}{3}c\left(a+b-\frac{2}{3}\right)\)
\(=\left(a+b\right)^2+c^2+\frac{4}{3}c\left(a+b+c-\frac{2}{3}-c\right)-2ab\)
\(\ge\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(a+b\right)^2}{2}\)
\(=\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(2-c\right)^2}{2}\)
\(=\frac{3c^2-4c+36}{18}=\frac{3\left(c-\frac{2}{3}\right)^2+\frac{104}{3}}{18}\ge\frac{52}{27}\)
Vậy....
P/s: Em ko chắc...Ban đầu định dồn biến nhưng thôi mệt lắm:P