K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Nếu y=0⇒x2−5x+6=0⇒x∈2;3

-Nếu y=1⇒x2−5x+4=0⇒x∈1;4

-Nếu y>1

 3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)

 Thay vào đầu bài ta có 9k2−9k+3=3y⇒3k2−3k+1=3y−1

 Nhận thấy 3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)

Vậy pt có 4 nghiệm nguyên

22 tháng 10 2019

\(x^2-xy=x-3y+2017\)

<=> \(x\left(x-y\right)=\left(3x-3y\right)-2x+2017\)

<=> \(x\left(x-y\right)-3\left(x-y\right)+2x-6=2017-6\)

<=> \(\left(x-y\right)\left(x-3\right)+2\left(x-3\right)=2011\)

<=> \(\left(x-3\right)\left(x-y+2\right)=2011\)

Vì x, y nguyên nên x - 3 và x - y + 2 là số nguyên

Có thể xảy ra các TH:

TH1: x -3 =1 ; x -y +2 =2011

<=> x  = 4; y = -2005 tm

TH2: x -3 = 2011; x - y + 2 = 1

Tự tính

TH3 : x -3 =-1; x -y +2 =-2011. Tự tính.

TH4: x - 3 = -2011; x - y + 2 =-1. Tự tính.

22 tháng 10 2019

Thanks