(1) Tìm các nghiệm nguyên dương của các phương trình sau (Phương trình nghiệm nguyên)
a) \(5\left(a+b+c+d\right)+7=abcd\)
b) \(2\left(x+y+z\right)+9=3xyz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k=0 => \(9x^2-25=0\)
\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)
x=-1 => 9-25-k2=2k=0
=> k2-2k+16=0
=> không có giá trị k thỏa mãn
=>(7x-3).3=(x-1).2
21x-9=2x-2
21x-2x=-2+9
19x=7
x=7:19=7/19
\(\frac{7x-3}{x-1}=\frac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-21=2x-2\)
\(\Leftrightarrow21x-2x=-2+21\)
\(\Leftrightarrow19x=19\)
\(\Rightarrow x=1\)
= xz ( x + z ) + xy ( x + y + z ) + yz ( x + y + z )
= xz ( x + z ) + xy ( x + z ) + yz ( x + z ) + xy2 + y2z
= ( xy + yz + zx ) ( x + z ) + y2( x + z )
= ( xy + y2 + yz + zx )( x + z )
= ( x + y ) ( y + z ) ( x + z )
Chúc bạn học tốt!
#peace
đầu tàu hỏa kéo toa xe voi luc F=500 000N.Công của lực kéo của đầu tàu khi xe dịch chuyển 0,2km là :
A.A=105j B.A=108j C.A=106j D.A=104j
Mk chọn B nha
Học tốt
ĐKXĐ: \(x\ne-3;x\ne-m\), ta có:
\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)\(\Rightarrow x^2-m^2+x^2-9=2\left(x+3\right)\left(x+m\right)\)
<=> \(2x^2-m^2-9=2\left(x^2+3x+3m+mx\right)\)
\(\Leftrightarrow-2\left(m+3\right)x=\left(m+3\right)^2\left(1\right)\)
Với m =3 thì (1) có dạng 0x=0. Nghiệm đúng với mọi x tmđk \(\hept{\begin{cases}x\ne-3\\x\ne-m\end{cases}}\), do đó tập nghiệm của phương trình là x\(\ne\pm3\)
Với m\(\ne\)-3 thì phương trình (1) có nghiệm \(x=-\frac{\left(m+3\right)^2}{2\left(m+3\right)}=-\frac{m+3}{2}\)
Để giá trị này là nghiệm của phương trình thì ta phải có:
\(-\frac{m+3}{2}\ne-3\)và \(-\frac{m+3}{2}\ne-m\)tức là \(m\ne-3\)
vậy nếu \(m\ne\pm3\)thì \(x=-\frac{m+3}{2}\)là nghiệm
Kết luận...........
a. Pt trên là pt bậc nhất↔ m-1≠≠ 0
⇔ m≠≠ 1
b. +Với m-1=0 ⇔m=1 pt trên⇔0x=2m-1 (pt vô nghiệm)
+Với m-1≠≠ 0⇔m≠≠ 1 pt trên ⇔x=2m−1m−12m−1m−1
Kết luận :Với m=1 ptvn , với m≠≠ 1 pt có nghiệm duy nhất x=2m−1m−1
b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)
không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:
\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)
\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)
\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)
ĐCĐK và kết luận
Vậy (1;1;13);(13;1;1);(1;13;1)