K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
24 tháng 8 2021

Có: 2n+2017=a^2 (1)        (a,b ∈N)

      n+2019=b^2  (2)   

Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)

 (1) trở thành 2n+2017=(2k+1)^2

                    ⇔ n+1008=2k(k+1)

Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2 

⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)

Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)

(2) trở thành n+2019=(2h+1)^2

                    ⇔n+2018=4(h^2+h) (3)

Có: n chia hết cho 4, 2018 không chia hết cho 4

⇒ n+2018 không chia hết cho 4

mà 4(h^2+h) chia hết cho 4

Nên (3) vô lý

Vậy không tồn tại n thỏa mãn

27 tháng 10 2019

Đặt \(t=6x+1\)và \(h=\sqrt{x^2+3}\)

\(\frac{1}{4}\cdot t^2+h^2-\frac{9}{4}=th\)

\(\Leftrightarrow\left(t-2h\right)^2=9\)

\(\Leftrightarrow t-2h=\pm3\)

Với \(t-2h=3\)ta có

\(6x+1-2\sqrt{x^2+3}=3\)

\(\Leftrightarrow3x-1=\sqrt{x^2+3}\)

\(\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x^2+3=\left(3x+2\right)^2\end{cases}\Leftrightarrow x=\frac{\sqrt{7}-3}{4}}\)

Vậy pt có nghiệm là \(x=1;x=\frac{\sqrt{7}-3}{4}\)

27 tháng 10 2019

\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

CMTT :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2.}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

CMTT : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

27 tháng 10 2019

\(a+b+c+ab+ac+bc=6abc\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{cases}}\) \(\Rightarrow x+y+z+xy+xz+yz=6\)

Cần chứng minh \(P=x^2+y^2+z^2\ge3\)

Ta có BĐT quen thuộc : 

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế : 

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\) 

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)