Cho đa thức P x x2 6x 12. Chứng tỏ rằng đa thức trên không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha , mình chỉ giúp bạn chứng minh thôi ( mình chứng minh từng câu cho dễ nhìn nha )
a> Xét tam giác BAD và tam giác EAD có
BA = EA ( gt )
góc BAD = góc EAD ( vì AD là phân giác góc BAC ( gt ))
AD là cạnh chung
=> tam giác BAD = tam giác EAD ( c - g - c )
=> DE = DB ( vì là 2 cạnh tương ứng )
b> Vì tam giác BAD = tam giác EAD ( theo câu a )
=> góc ABD = góc AED ( vì là 2 góc tương ứng )
mà góc ABD = 90 độ ( vì tam giác ABC vuông tại B )
SUY ra : góc AED = 90 độ
do thế : góc DBH = góc DEC ( = 90 độ ) [ vì đều kề bù với 2 góc bằng 90 độ ở trên nha ]
Xét tam giác BDH và tam giác EDC có
góc DBH = góc DEC ( chứng minh trên )
DE = DB ( theo câu a ) độ
góc BDH = góc EDC ( vì là 2 góc đối đỉnh )
Suy ra : tam giác BDH = tam giác EDC ( g - c - g )
=> BH = EC
Mặt khác : AB = AE ( gt )
=> tam giác BAE cân tại A
=> góc ABE = ( 180 độ - BAE ) / 2 ( 1 )
Mà : BH = EC ( chứng minh trên )
=> AH = AC
=> tam giác HAC cân tại A
=> góc AHC = ( 180 độ - BAE ) / 2 ( 2)
mà hai góc này còn ở vị trí đồng vị ( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 )
Suy ra BE // HC
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z
TH1 : x + y + z = 0
=> x + y = - z ; y + z = - x và x + z = -y
Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )
= ( x + y / y ) ( z + y / z ) ( x + z / x ) ( 1 )
= - z / y . ( - x / z ) ( -y / x )
= - 1
TH2 : x + y + z khác 0
Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1
thì y + z - x / x = 1 => y + z - x = x => y + z = 2x ( 2 )
z + x - y / y = 1 z + x - y = y z + x = 2y ( 3 )
x + y - z / z = 1 x + y - z = z x + y = 2z ( 4 )
Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có
B = 2x/y . 2y / z . 2z / x
= 2 . 2 . 2 = 8
Vậy B = - 1 khi x + y + z = 0
B = 8 khi x + y + z khác 0
[ xin lỗi nha , tại mình không biết viết phân số ]
Ta có : f ( x ) = ax^2 + bx + c
Xét f ( 0 ) = a . 0^2 + b . 0 + c = 2018
=> c = 2018
Xét f ( 1 ) = a . 1^2 + b . 1 + c = 2019
=> a + b + c = 2019
= > a + b = 1 [ do c = 2018 theo trên rồi nhá ] ( 1 )
Xét f ( - 1 ) = a . ( -1 ) ^2 + b . ( -1 ) + c
=> a - b + c = 2017
=> a - b = -1 ( 2 )
Cộng ( 1 ) và ( 2 ) vế theo vế , ta được
a + b + a - b = 1 + ( - 1 )
= > 2. a = 0
= > a = 0
Trừ ( 1 ) và ( 2 ) vế theo vế ta được
a + b - a + b = 1 - ( - 1 )
=> 2 . b = 2
= > b = 1
Do đó : xét f ( - 2019 ) = a . ( - 2019 )^2 + b . ( - 2019 ) + c
=> 0 - 2019 + 2018
= - 1
Vậy f ( - 2019 ) = -1
[ nếu gặp các dạng bài này bạn cứ thay vào đa thức ban đầu rồi biến đổi tìm ra a , b , c nha ]
Đáp án:
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.